Incommensurability In Mathematics

  • Otávio Bueno
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 5)


In this paper, as part of an argument for the of revolutions in mathematics, I argue that there in incommensurability in Mathematics. After Devising A Framework Sensitive To Meaning Change And To Changes In The Extension Of Mathematical Predicates, I Consider Two Case Studies That Illustrate Different Ways In Which Incommensurability Emerge In Mathematical Practice. The Most Detailed Case Involves Nonstandard Analysis, And The Existence Of Different Notions Of The Continuum. But I Also Examine How Incommensurability Found Its Way Into Set Theory. I Conclude By Examining Some Consequences That Incommensurability Has To Mathematical Practice.


Incommensurability Nonstandard Analysis Set Theory Mathematical Practice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azzouni, J. [1994]: Metaphysical Myths, Mathematical Practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Azzouni, J. [1997]: “Thick Epistemic Access: Distinguishing the Mathematical from the Empirical”, Journal of Philosophy 94, pp. 472-484.CrossRefGoogle Scholar
  3. Balaguer, M. [1998]: Platonism and Anti-Platonism in Mathematics. New York: Oxford University Press.Google Scholar
  4. Bell, J.L., and Machover, M. [1977]: A Course in Mathematical Logic. Amsterdam: North-Holland.Google Scholar
  5. Berkeley, G. [1734]: “The Analyst”, in Berkeley [1951], vol.4., pp. 65-102.Google Scholar
  6. Berkeley, G. [1951]: The Works of George Berkeley Bishop of Cloyne. (Edited by A.A. Luce and T.E. Jessop.) London: Thomas Nelson and Sons.Google Scholar
  7. Bernstein, A., and Robinson, A. [1966]: “Solution of an Invariant Subspace Problem of K.T. Smith and P.R. Halmos”, Pacific Journal of Mathematics 16, pp. 421-431. (Reprinted in Robinson [1979b], pp. 88-98.)CrossRefGoogle Scholar
  8. Bueno, O. [2000]: “Empiricism, Mathematical Change and Scientific Change”, Studies in History and Philosophy of Science 31, pp. 269-296.CrossRefGoogle Scholar
  9. Bueno, O. [2002]: “Mathematical Change and Inconsistency: A Partial Structures Approach”, in Meheus (ed.) [2002], pp. 59-79.Google Scholar
  10. Cantor, G. [1883]: “Über unendliche, lineare punktmannigfaltigkeiten. V”, Mathematische Annalen 21, pp. 545-591.CrossRefGoogle Scholar
  11. Dauben, J.W. [1995]: Abraham Robinson: The Creation of Nonstandard Analysis, a Personal and Mathematical Odyssey. Princeton, NJ: Princeton University Press.Google Scholar
  12. Gillies, D. (ed.) [1992]: Revolutions in Mathematics. Oxford: Clarendon Press.Google Scholar
  13. Hallett, M. [1984]: Cantorian Set Theory and Limitation of Size. Oxford: Clarendon Press.Google Scholar
  14. Halmos, P. [1966]: “Invariant Subspaces of Polynomially Compact Operators”, Pacific Journal of Mathematics 16, pp. 433-437.CrossRefGoogle Scholar
  15. Halmos, P. [1985]: I Want to Be a Mathematician. An Automathography. New York: Springer-Verlag.CrossRefGoogle Scholar
  16. Henson, C.W., and Keisler, H.J. [1986]: “On the Strength of Nonstandard Analysis”, Journal of Symbolic Logic 51, pp. 377-386.CrossRefGoogle Scholar
  17. Kanamori, A. [1996]: “The Mathematical Development of Set Theory From Cantor to Cohen”, Bulletin of Symbolic Logic 2, pp. 1-71.CrossRefGoogle Scholar
  18. Kanamori, A. [1997]: “The Mathematical Import of Zermelo’s Well-Ordering Theorem”, Bulletin of Symbolic Logic 3, pp. 281-311.CrossRefGoogle Scholar
  19. Kuhn, T. [1962]: The Structure of Scientific Revolutions. Chicago: University of Chicago Press. (A second edition was published in 1970.)Google Scholar
  20. Lakatos, I. (ed.) [1967]: Problems in the Philosophy of Mathematics. Amsterdam: North-Holland.Google Scholar
  21. Lakatos, I. [1976]: Proofs and Refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Lakatos, I. [1978a]: “Cauchy and the Continuum: The Significance of Non-Standard Analysis for the History and Philosophy of Mathematics”, in Lakatos [1978c], pp. 43-60.Google Scholar
  23. Lakatos, I. [1978b]: “What Does a Mathematical Proof Prove?”, in Lakatos [1978c], pp. 61-69.Google Scholar
  24. Lakatos, I. [1978c]: Mathematics, Science and Epistemology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Lavine, S. [1994]: Understanding the Infinite. Cambridge, Mass.: Harvard University Press.Google Scholar
  26. Leibniz, G.W. [1701]: “Mémoire de M.G.G. Leibniz touchant son sentiment sur le calcul différentiel. Journal de Trévoux”, in Leibniz [1858], p. 350.Google Scholar
  27. Leibniz, G.W. [1716]: “Letter to Dangicourt, sur les monades et le calcul infinitésimal etc. (September 11)”, in Leibniz [1789], vol. 3, pp. 499-502.Google Scholar
  28. Leibniz, G.W. [1789]: Opera Omnia. (Edited by L. Dutens.) Geneva.Google Scholar
  29. Leibniz, G.W. [1858]: Mathematische Schriften. (Volume 6 of Die Philosophischen Scriften von G.W. Leibniz, edited by C.I. Gerhardt.) Berlin.Google Scholar
  30. Luxemburg, W.A.J. [1962]: Nonstandard Analysis. Lectures on A. Robinson’s Theory of Infinitesimals and Infinitely Large Numbers. Pasadena: Mathematics Department, California Institute of Technology. (Second corrected edition, 1964.)Google Scholar
  31. Machover, M. [1967]: “Non-Standard Analysis without Tears: An Easy Introduction to A. Robinson’s Theory of Infinitesimals”, Technical Report no. 27, Office of Naval Research, Information Systems Branch. Jerusalem: The Hebrew University of Jerusalem.Google Scholar
  32. Meheus, J. (ed.) [2002]: Inconsistency in Science. Dordrecht: Kluwer Academic Publishers.Google Scholar
  33. Moore, G.H. [1982]: Zermelo’s Axiom of Choice: Its Origins, Development, and Influence. New York: Springer-Verlag.CrossRefGoogle Scholar
  34. Resnik, M. [1997]: Mathematics as a Science of Patterns. Oxford: Clarendon Press.Google Scholar
  35. Robinson, A. [1967]: “The Metaphysics of the Calculus”, in Lakatos (ed.) [1967], pp. 27-46. (Reprinted in Robinson [1979b], pp. 537-555.)Google Scholar
  36. Robinson, A. [1974]: Non-Standard Analysis. (First edition, 1966.) Amsterdam: North-Holland. (Reprinted edition Princeton, NJ: Princeton University Press, 1996.)Google Scholar
  37. Robinson, A. [1979a]: Selected Papers of Abraham Robinson. Volume 1: Model Theory and Algebra. (Edited by H.J. Keisler, S. Körner, W.A.J. Luxemburg and A.D. Young.) New Haven: Yale University Press.Google Scholar
  38. Robinson, A. [1979b]: Selected Papers of Abraham Robinson. Volume 2: Nonstandard Analysis and Philosophy. (Edited by H.J. Keisler, S. Körner, W.A.J. Luxemburg and A.D. Young.) New Haven: Yale University Press.Google Scholar
  39. Shapiro, S. [1991]: Foundations Without Foundationalism: A Case for Second-order Logic. Oxford: Clarendon Press.Google Scholar
  40. van Fraassen, B.C. [1980]: The Scientific Image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  41. van Heijenoort, J. (ed.) [1967]: From Frege to Gödel. Cambridge, Mass.: Harvard University Press.Google Scholar
  42. Zermelo, E. [1904]: “Beweis, dass jede Menge wohlgeordnet werden kann (Aus einem an Herrn Hilbert gerichteten Briefe)”, Mathematische Annalen 59, pp. 514-516. (English translation in van Heijenoort (ed.) [1967], pp. 139-141.)CrossRefGoogle Scholar
  43. Zermelo, E. [1908a]: “Neuer Beweis für die Möglichkeit einer Wohlordnung”, Mathematische Annalen 65, pp. 107-128. (English translation in van Heijenoort (ed.) [1967], pp. 183-198.)CrossRefGoogle Scholar
  44. Zermelo, E. [1908b]: “Untersuchungen über die Grundlagen der Mengenlehre. I”, Mathematische Annalen 65, pp. 261-281. (English translation in van Heijenoort (ed.) [1967], pp. 199-215.)CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Otávio Bueno
    • 1
  1. 1.University of South CorolinaUSA

Personalised recommendations