Advertisement

BRAIDED SPACE-TIME PARTICLE NETWORKS

  • K. de LANGE KRISTIANSEN
  • G. HELGESEN
  • A.T. SKJELTORP
Conference paper
Part of the NATO Science Series II book series (NAII, volume 232)

Abstract

We study the complex dynamics of microspheres dispersed in ferrofluids subjected to external oscillating magnetic fields, see Fig. 1.

Keywords

Half Period World Line Magnetic Hole Braid Generator Braid Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. K. Zipf, Human Behavior and The Principle of Least Effort (Addison-Wesley Press, Massachusetts, 1949).Google Scholar
  2. 2.
    D. Sornette, L. Knopoff, Y. Y. Kagan, C. Vanneste, J. Geophys. Res. 101, 13883 (1996).CrossRefADSGoogle Scholar
  3. 3.
    R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. Simons, H. E. Stanley, Phys. Rev. Lett. 73, 3169 (1994).CrossRefADSGoogle Scholar
  4. 4.
    B. Mandelbrot, Word 10, 1 (1954).Google Scholar
  5. 5.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1982).zbMATHGoogle Scholar
  6. 6.
    P. Meakin and A.T. Skjeltorp, Adv. Phys. 42, 1 (1993).CrossRefADSGoogle Scholar
  7. 7.
    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985).Google Scholar
  8. 8.
    J. Ugelstad, P. C. Mørk, K. Herder Kaggerud, T. Ellingsen, A. Berge, Adv. Colloid Int. Sci. 13, 101 (1980).CrossRefGoogle Scholar
  9. 9.
    A.T. Skjeltorp, Phys. Rev. Lett. 51, 2306 (1983).CrossRefADSGoogle Scholar
  10. 10.
    Type EMG 909 from Ferrofluidics GmbH, Hohes Gestade 14, 72622 Nürtingen, Germany, with susceptibility χ = 0.8, saturation magnetization M s = 20 mT, viscosity η = 6.10-3 Nsm-2, and density ρ = 1020 kgm-3.Google Scholar
  11. 11.
    G. Helgesen, P. Pieranski, and A. T. Skjeltorp, Phys. Rev. A 42, 7271 (1990).CrossRefADSGoogle Scholar
  12. 12.
    S. Clausen, G. Helgesen, and A. T. Skjeltorp, Int. J. Bifurcation and Chaos 8, 1383 (1998).CrossRefzbMATHGoogle Scholar
  13. 13.
    E. Artin, Theory der Zöpfe, Abh. Mat. Sem. Univ. Hamburg, 4, 47–72 (1925).CrossRefzbMATHGoogle Scholar
  14. 14.
    J.S. Birman, Braids, Links and Mapping Class Group, Annals of Math. Study, 82 (Princeton Univ. Press, 1974).Google Scholar
  15. 15.
    C.C. Adams, The Knot Book (W. H. Freeman and Company, 1994).Google Scholar
  16. 16.
    F.A. Garside, Quart. J. Math. 20, 235 (1967).MathSciNetCrossRefGoogle Scholar
  17. 17.
    E.A. Elrifai and H. R. Morton, Quart. J. Math. 45, 479 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    K.d.L. Kristiansen, G. Helgesen, and A.T. Skjeltorp (unpublished).Google Scholar
  19. 19.
    B.B. Mandelbrot, in Proceedings of symposia in applied mathematics vol. XII, R. Jakobson (ed.) (New York: American Mathematical Society, 1961).Google Scholar
  20. 20.
    K.d.L. Kristiansen, G. Helgesen, and A.T. Skjeltorp, Physica A 335, 413 (2004).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, Phys. Rev. Lett. 85, 3317 (2000).CrossRefADSGoogle Scholar
  22. 22.
    C. E. Shannon, Bell Syst. Tech. 30, 50 (1950).MathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • K. de LANGE KRISTIANSEN
    • 1
    • 2
  • G. HELGESEN
    • 1
  • A.T. SKJELTORP
    • 1
    • 2
  1. 1.Institute for Energy TechnologyKjellerNorway
  2. 2.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations