Skip to main content

Compressible Multi-Hydrodynamics (CMH): Breakup, Mixing, and Dispersal of Liquids/Solids in High Speed Flows

  • Conference paper
IUTAM Symposium on Computational Approaches to Multiphase Flow

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 81))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El-Fattah, A.M. and Henderson, L.H., 1991, Shock waves at a slow-fast gas interface, Journal of Fluid Mechanics 89(1), 79–95.

    Article  Google Scholar 

  2. Ball, G.J., Howell, B.P., Leighton, T.G. and Schofield, M.J., 2000, Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves 10, 265–276.

    Article  MATH  Google Scholar 

  3. Chandrasekhar, S., 1981, Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, pp. 441–443.

    Google Scholar 

  4. Chang, C.-H. and Liou, M.-S., 2003, A new approach to the simulation of compressible multifluid flows with AUSM+ scheme, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, June 23–26, Orlando, FL.

    Google Scholar 

  5. Chang, C.-H. and Liou, M.-S., 2004, Simulation of multifluid multiphase flows with AUSM+ scheme, in Proceedings of the 3rd International Conference on Computational Fluid Dynamics, ICCFD’3, July 12–16, Toronto, Canada.

    Google Scholar 

  6. Chern, I.L., Glimm, J., McBryan, O., Plohr, B. and Yaniv, S., 1985, Front tracking for gas dynamics, Journal of Computational Physics 62, 83–110.

    Article  MathSciNet  Google Scholar 

  7. Cocchi, J.-P. and Saurel, R., 1997, A Riemann problem based method for the resolution of compressible multimaterial flows, Journal of Computational Physics 137, 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinh, T.N., Nourgaliev, R.R. and Theofanous, T.G., 2003, On the multiscale treatment of multifluid flow, Multiphase Science and Technology 5(1–4), 275–288.

    Article  Google Scholar 

  9. Dinh, T.N., Nourgaliev, R.R. and Theofanous, T.G., 2005, On the numerical simulation of acceleration-driven multifluid mixing, Multiphase Science and Technology 17(4), 1–32.

    Google Scholar 

  10. Drew, D.A. and Passman, S.L., 1998, Theory of Multicomponent Fluids, Springer-Verlag, New York.

    MATH  Google Scholar 

  11. E, W. and Engquist, B., 2003, Multiscale modeling and computation, Notices of the AMS 50(9), 1062–1070.

    MathSciNet  MATH  Google Scholar 

  12. Enright, D., Fedkiw, R., Ferziger, J. and Mitchell, I., 2002, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics 183, 83–116.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedkiw, R.P., Aslam, T., Merriman, B. and Osher, S., 1999, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), Journal of Computational Physics 152, 457–492.

    Article  MathSciNet  MATH  Google Scholar 

  14. Grove, J.W. and Menikoff, R., 1990, Anomalous reflection of a shock wave at a fluid interface, Journal of Fluid Mechanics 219, 313–336.

    Article  MathSciNet  Google Scholar 

  15. Ishii, M., 1975, Thermofluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.

    Google Scholar 

  16. Harper, E.Y., Grube, G.W. and Chang I.-D., 1972, On the breakup of accelerating liquid drops, Journal of Fluid Mechanics 52, 565–591.

    Article  MATH  Google Scholar 

  17. Henderson, L.-F., Colella, P. and Puckett, E.G., 1991, On the refraction of shock waves at a slow-fast gas interface, Journal of Fluid Mechanics 224, 1–27.

    Article  Google Scholar 

  18. Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. and Zhang, Q., 1999, Rychtmyer—Meshkov instability growth: Experiment, simulation and theory, Journal of Fluid Mechanics 389, 55–79.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, X.Y. and Khoo, B.C., 2004, An interface interaction method for compressible multi-fluids, Journal of Computational Physics 198(1), 35–64.

    Article  MATH  Google Scholar 

  20. Joseph, D.D., Belanger, J. and Beavers, G.S., 1999, Breakup of a liquid suddenly exposed to a high-speed airstream, International Journal of Multiphase Flow 25, 1263–1303.

    Article  MATH  Google Scholar 

  21. Karni, S., 1996, Hybrid multifluid algorithms, SIAM Journal on Scientific Computing 17(5), 1019–1039.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, M., Fedkiw, R.P. and Liu, X.-D., 2000, A boundary condition capturing method for multiphase incompressible flow, Journal of Scientific Computing 15(2), 323–360.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G.J., Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2004, Particle-to-particle long-range interaction and drag in supersonic flows, AIAA 2004-1064, 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5–8, Reno, NV, USA.

    Google Scholar 

  24. Li, G.J., Sushchikh, S.Yu., Dinh, T.N. and Theofanous, T.G., 2004, Breakup and mixing of Newtonian liquid droplets in subsonic and supersonic gas streams, in Proceedings of the 5th International Conference on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30–June 4, CD-Rom, Paper No. 364.

    Google Scholar 

  25. Liou, M.-S., 2003, A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, June 23–26, Orlando, FL.

    Google Scholar 

  26. Liu, T.G., Khoo, B.C. and Yeo, K.S., 2003, Ghost fluid method for strong shock impacting on material interface, Journal of Computational Physics 190, 651–681.

    Article  MATH  Google Scholar 

  27. Lhuillier, D., 2003, A mean-field description of two-phase flows with phase changes, International Journal of Multiphase Flow 29(3), 511–525.

    Article  MATH  Google Scholar 

  28. Miller, G.H. and Puckett, E.G., 1996, A high-order Godunov method for multiple condensed phases, Journal of Computational Physics 128, 134–164.

    Article  MATH  Google Scholar 

  29. Mulder, W., Osher, S. and Sethian, J.A., 1992, Computing interface motion in compressible gas dynamics, Journal of Computational Physics 100, 209–228.

    Article  MathSciNet  MATH  Google Scholar 

  30. Nigmatulin, R.I., 1979, Spatial averaging in the mechanics of heterogeneous and dispersed systems, International Journal of Multiphase Flow 5, 353–385.

    Article  MATH  Google Scholar 

  31. Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2004, A pseudo-compressibility method for the numerical simulation of incompressible multifluid flows, International Journal of Multiphase Flow 30(7–8), 901–937.

    Article  MATH  Google Scholar 

  32. Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2004, Direct numerical simulation of compressible multiphase flows: Interaction of shock waves with dispersed multimaterial media, in Proceedings of the 5th International Conference on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30–June 4, CD-Rom, Paper No. 494.

    Google Scholar 

  33. Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2004, On modeling of collisions in direct numerical simulation of high-speed multiphase flows, in Proceedings of the 3rd International Conference on Computational Fluid Dynamics, ICCFD’3, July 12–16, Toronto, Canada.

    Google Scholar 

  34. Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2006, Adaptive characteristics-based matching for compressible multifluid dynamics, Journal of Computational Physics, in press.

    Google Scholar 

  35. Nourgaliev, R.R., Sushchikh, S.Yu., Dinh, T.N. and Theofanous, T.G., 2005, Shock wave refraction patterns at interfaces, International Journal of Multiphase Flow 31(9), 969–995.

    MATH  Google Scholar 

  36. Nourgaliev, R.R., Dinh, T.N. and Theofanous, T.G., 2005, Sharp treatment of surface tension and viscous stresses in multifluid dynamics, AIAA 2005-5349, 17th AIAA Computational Fluid Dynamics Conference, June 6–9, Toronto, Canada.

    Google Scholar 

  37. Osher, S. and Sethian, J.A., 1998, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton—Jacobi formulations, Journal of Computational Physics 79, 12–49.

    Article  MathSciNet  Google Scholar 

  38. Quirk, J.J. and Karni, S., 1996, On the dynamics of a shock-bubble interaction, Journal of Fluid Mechanics 318, 129–163.

    Article  MATH  Google Scholar 

  39. Prosperetti, A., 2003, Two-fluid modeling and averaged equations, Multiphase Science and Technology 5(1–4).

    Google Scholar 

  40. Ranger, A.A. and Nicholls, J.A., 1969, Aerodynamic shattering of liquid drops, AIAA Journal 7, 285–290.

    Article  Google Scholar 

  41. Saurel, R. and Abgrall, R., 1999, A simple method for compressible multifluid flows, SIAM Journal on Scientific Computing 21(3), 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  42. Taylor, G.I., 1963, The shape and acceleration of a drop in a high-speed air stream, in The Scientific Papers of Sir Geoffrey Ingram Taylor, 3, G.K. Batchelor (ed.), University Press, Cambridge.

    Google Scholar 

  43. Theofanous, T.G., Li, G.J. and Dinh, T.N., 2004, Aerobreakup in rarefied supersonic gas flows, Transactions of the ASME, Journal of Fluids Engineering 126, 516–527.

    Article  Google Scholar 

  44. Youngs, D.L., 1994, Numerical simulation of mixing by Rayleigh—Taylor and Richtmyer—Meshkov instabilities, Laser and Particle Beams 12(4), 725–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Theofanous, T., Nourgaliev, R., Li, G., Dinh, N. (2006). Compressible Multi-Hydrodynamics (CMH): Breakup, Mixing, and Dispersal of Liquids/Solids in High Speed Flows. In: Balachandar, S., Prosperetti, A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow. Fluid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4977-3_35

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4977-3_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4976-7

  • Online ISBN: 978-1-4020-4977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics