Direct Numerical Simulations of Bubbly Flows

  • Gretar Tryggvason
  • Jiacai Lu
  • Souvik Biswas
  • Asghar Esmaeeli
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 81)

Abstract

The status of direct numerical simulations of bubbly flows is reviewd and a few recent results are presented. The development of numerical methods based on the one-field formulation has made it possible to follow the evolution of a large number of bubbles for a sufficiently long time so that converged statistics for the averaged properties of the flow can be obtained. In addition to extensive studies of homogeneous bubbly flows, recent investigations have helped give insight into drag reduction due to the injection of bubbles into turbulent flows and two-fluid modeling of laminar multiphase flows in channels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.P. Antal, R.T. Lahey and J.E. Flaherty, 1991, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiphase Flow 17, 635–652.CrossRefMATHGoogle Scholar
  2. 2.
    A.A. Amsden and F.H. Harlow, 1968, Transport of turbulence in numerical fluid dynamics, J. Comput. Phys. 3, 94–110.CrossRefMATHGoogle Scholar
  3. 3.
    S. Biswas, A. Esmaeeli and G. Tryggvason, 2005, Comparison of results from DNS of bubbly flows with a two-fluid model for two-dimensional laminar flows, Int. J. Multiphase Flows 31, 1036–1048.MATHGoogle Scholar
  4. 4.
    J.U. Brackbill, D.B. Kothe and C. Zemach, 1992, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335–354.CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    B. Bunner and G. Tryggvason, 2002, Dynamics of homogeneous bubbly flows: Part 1, Rise velocity and microstructure of the bubbles, J. Fluid Mech. 466, 17–52.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    B. Bunner and G. Tryggvason, 2002, Dynamics of homogeneous bubbly flows. Part 2, Fluctuations of the bubbles and the liquid, J. Fluid Mech. 466, 53–84.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    B. Bunner and G. Tryggvason, 2003, Effect of bubble deformation on the stability and properties of bubbly flows, J. Fluid Mech. 495, 77–118.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    C. Crowe, M. Sommerfeld and Y. Tsuji, 1998, Multiphase Flows with Droplets and Particles, CRC Press.Google Scholar
  9. 9.
    D.A. Drew and S.L. Passman, 1999, Theory of Multicomponent Fluids, Springer.Google Scholar
  10. 10.
    A. Esmaeeli and G. Tryggvason, 1998, Direct numerical simulations of ubbly flows. Part I — Low Reynolds number arrays, J. Fluid Mech. 377, 313–345.CrossRefMATHGoogle Scholar
  11. 11.
    A. Esmaeeli and G. Tryggvason, 1999, Direct numerical simulations of bubbly flows. Part II — Moderate Reynolds number arrays, J. Fluid Mech. 385, 325–358.CrossRefMATHGoogle Scholar
  12. 12.
    A. Esmaeeli, E.A. Ervin and G. Tryggvason, 1994, Numerical simulations of rising bubbles, in Proceedings of the IUTAM Conference on Bubble Dynamics and Interfacial Phenomens, Birmingham, UK, 6–9 September 1993, J.R. Blake, J.M. Boulton-Stone and N.H. Thomas (eds), pp. 247–255.Google Scholar
  13. 13.
    A. Fortes and D.D. Joseph and T. Lundgren, 1987, Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech. 177, 467–483.CrossRefGoogle Scholar
  14. 14.
    M.F. Göz, B. Bunner, M. Sommerfeld and G. Tryggvason, 2000, EDSM2000-11151: The unsteady dynamics of two-dimensional bubbles in a regular array, in Proceedings of the ASME FEDSM’00 ASME 2000 Fluids Engineering Division Summer Meeting, Boston, MA, June 11–15.Google Scholar
  15. 15.
    J. Jimenez and P. Moin, 1991, The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225, 213–240.CrossRefMATHGoogle Scholar
  16. 16.
    A. Kanai and H. Miyata, 2001, Direct numerical simulation of wall turbulent flows with microbubbles, Int. J. Num. Meth. Fluids 35, 593–615.CrossRefMATHGoogle Scholar
  17. 17.
    H. Kato, M. Miyanaga, H. Yamaguchi and M.M. Guin, 1995, Frictional drag reduction by injecting bubbly water into turbulent boundary layer and the effect of plate orientation, in Proceedings of the 2nd International Conference on Multiphase Flow’ 95, ICMF95, Kyoto, pp. 31–38.Google Scholar
  18. 18.
    T. Kawamura and Y. Kodama, 2002, Numerical simulation method to resolve interactions between bubbles and turbulence, Int. J. of Heat and Fluid Flow 23, 627–638.CrossRefGoogle Scholar
  19. 19.
    Y. Kodama, A. Kakugawa, T. Takahashi, S. Nagaya and K. Sugiyama, 2003, Microbubbles: Drag reduction and applicability to ships, in Twenty-Fourth Symposium on Naval Hydrodynamics, 2003, Naval Studies Board (NSB). Available at: http://books.nap.edu/books/NI000511/html/Google Scholar
  20. 20.
    B.E. Launder and D.B. Spalding, 1972, Mathematical Models of Turbulence, Academic Press, New York.MATHGoogle Scholar
  21. 21.
    J. Lu, A. Fernandez and G. Tryggvason, 2005, The effect of bubbles on the wall shear in a turbulent channel flow, Phys. Fluids 17, 095102.CrossRefGoogle Scholar
  22. 22.
    C.L. Merkle and S. Deutsch, 1990, Drag reduction in liquid boundary layers by gas injection, Progr. Astronautics Aeronautics 123), 351–412.Google Scholar
  23. 23.
    G. Ryskin and L.G. Leal, 1984, Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid, J. Fluid Mech. 148, 19–35.CrossRefMATHGoogle Scholar
  24. 24.
    M. Sussman, P. Smereka and S. Osher, 1994, A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys. 114, 146–159.CrossRefMATHGoogle Scholar
  25. 25.
    N. Takada, M. Misawa, A. Tomiyama and S. Fujiwara, 2000, Numerical simulation of two-and three-dimensional two-phase fluid motion by lattice Boltzmann method, Comput. Phys. Commun. 129, 233–246.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    N. Takada, M. Misawa, A. Tomiyama and S. Hosokawaî, 2001, Simulation of bubble motion under gravity by lattice Boltzmann method, J. Nucl. Sci. Technol. 38, 330–341.CrossRefGoogle Scholar
  27. 27.
    H. Takewaki, A. Nishiguchi and T. Yabe, 1985, Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic-type equations, J. Comput. Phys. 61, 261–268.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    A. Tomiyama, I. Zun, A. Sou and T. Sakaguchi, 1993, Numerical analysis of bubble motion with the VOF method, Nucl. Engr. Design 141, 69–82.CrossRefGoogle Scholar
  29. 29.
    G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, 2001, A front tracking method for the computations of multiphase flow, J. Comput. Phys. 169, 708–759.CrossRefMATHGoogle Scholar
  30. 30.
    S.O. Unverdi and G. Tryggvason, 1992, A front tracking method for viscous incompressible flows, J. Comput. Phys. 100, 25–37.CrossRefMATHGoogle Scholar
  31. 31.
    D.Z. Zhang and A. Prosperetti, 1994, Ensemble phase-averaged equations for bubbly flows, Phys. Fluids 6, 2956–2970.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gretar Tryggvason
    • 1
  • Jiacai Lu
    • 1
  • Souvik Biswas
    • 1
  • Asghar Esmaeeli
    • 1
  1. 1.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations