Spatial genetic structure of an explicit glacial refugium of maritime pine (Pinus pinaster Aiton) in southeastern Spain

  • Santiago C. González-Martínez
  • Aranzazu Gómez
  • José S. Carrión
  • Dolores Agúndez
  • Ricardo Alía
  • Luis Gil


The Iberian Peninsula has been described as a glacial refugium for numerous organisms. In particular, there is evidence both from pollen records and genetic studies that shows the existence of Mediterranean conifers (Pinus halepensis Miller, Pinus pinaster Aiton, and Pinus pinea L) in southeastern Spain during the last glacial stage. Data from eight polymorphic allozyme markers were used to study the spatial genetic structure of 11 native populations of maritime pine, P. pinaster, in this region. Models of isolation by distance were adjusted to different groups of populations to test specific hypotheses about the role of mountain ranges in shaping the spatial genetic structure of maritime pine in southeastern Spain. In addition, pairwise gene interchange was analyzed using migration matrix models and maximum likelihood methods to make joint estimates of dispersal rates and population sizes. A complex pattern in the distribution of gene diversity was found, involving historical isolation due to geographical variables for particular populations. The role of mountain ranges in glacial refugia i) reducing the risk of a population bottleneck by altitudinal migration in response to climatic change, and ii) acting as geographical barriers to gene flow, is discussed.


genetic structure glacial refugia likelihood Mediterranean basin conifers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agúndez D, Degen B, von Wuehlisch G, Alía R (1999) Multilocus analysis of Pinus halepensis Mill. from Spain: genetic diversity and clinal variation. Silvae Genetica 48, 173-178.Google Scholar
  2. Alía R, Martín S, de Miguel J, Galera R, Agúndez D, Gordo J, Catalán G, Gil L (1996) Las regiones de procedencia de Pinus pinaster Ait. OA de Parques Nacionales, DGCONA, Madrid.Google Scholar
  3. Beerli P (1997-2001) Migrate: documentation and program, part of LAMARC. Version 1.1. Revised April 30, 2001. Scholar
  4. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. Proceedings of the National Academy of Sciences, USA 98, 4563-4568.Google Scholar
  5. Bennett KD (1997) Evolution and Ecology: The Pace of Life. Cambridge University Press, Cambridge.Google Scholar
  6. Bennett KD, Tzedakis PC Willis KJ (1991) Quaternary refugia of north European trees. Journal of Biogeography 18, 103-115.CrossRefGoogle Scholar
  7. Bucci G, Vendramin GG (2000) Delineation of genetics zones in the European Norway spruce natural range: preliminary evidence. Molecular Ecology 9, 923-934.PubMedCrossRefGoogle Scholar
  8. Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Molecular Ecology 12, 1487-1495.PubMedCrossRefGoogle Scholar
  9. Carrión JS (2002) Patterns and processes of late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 2047-2066.CrossRefGoogle Scholar
  10. Carrión JS, van Geel B (1999) Fine-resolution Upper Weichselian and Holocene palynolog-ical record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology 106, 209-236.CrossRefGoogle Scholar
  11. Carrión JS, Andrade A, Bennett KD, Navarro C, Munuera M (2001a) Crossing forest thresholds: inertia and collapse in a Holocene sequence from south-central Spain. The Holocene 11, 635-653.CrossRefGoogle Scholar
  12. Carrión JS, Munuera M, Dupré M, Andrade A (2001b) Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. Journal of Ecology 89, 783-797.CrossRefGoogle Scholar
  13. Castro LFT (1989) Isoenzimas do Pinus pinaster Ait. numa perspectiva de aplicação ao melhoramento genético da espécie. PhD Thesis, Universidade de Trás os Montes e Alto Douro.Google Scholar
  14. Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. The Amer-ican Statistician 49, 327-335.CrossRefGoogle Scholar
  15. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King JA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Webb III T, Wyckoff P (1998) Reid’s paradox of rapid plant migration: dispersal theory and interpretation of paleoecological records. BioScience 48, 13-24.CrossRefGoogle Scholar
  16. Comes HP, Abbott RJ (1998) The relative importance of historical events and gene flow on the population structure of a Mediterranean ragwort, Senecio gallicus (Asteraceae). Evolution 52, 355-367.CrossRefGoogle Scholar
  17. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3, 432-438.CrossRefGoogle Scholar
  18. Conkle MT, Hodgkiss PD, Nunnally LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. United States Department of Agriculture, Forest Service, General Technical Report PSW-64.Google Scholar
  19. Demesure B, Le Guerroué B, Lucchi G, Prat D, Petit RJ (2000) Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science 57, 63-71.CrossRefGoogle Scholar
  20. Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognizes three refu-gial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80, 584-593.PubMedCrossRefGoogle Scholar
  21. Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Molecular Ecology 9, 1495-1503.PubMedCrossRefGoogle Scholar
  22. Gómez A, Alía R, Bueno MA (2001) Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci. Annals of Forest Science 58, 869-875.CrossRefGoogle Scholar
  23. Gómez A, Vendramin GG, González-Martínez SC, Alía R (2005) Genetic diversity and differentiation of two Mediterranean pines (P. halepensis Mill. and P. pinaster Ait.) along a latitudinal cline using cpSSR markers. Diversity and Distributions 11, 257-263.CrossRefGoogle Scholar
  24. González-Martínez SC (2001) Estructura poblacional y flujo genético de Pinus pinaster Aiton en el noroeste de la Península Ibérica. PhD Thesis, Universidad Politécnica de Madrid.Google Scholar
  25. González-Martínez SC, Agúndez D, Alía R, Salvador L, Gil L (2001) Geographical variation of gene diversity of Pinus pinaster Ait. in the Iberian Peninsula.In: Genetic Response of Forest Systems to Changing Environmental Conditions (eds. Müller-Starck G, Schu-bert R), pp. 161-171. Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  26. González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater JM, Gil L, Alía R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinasterAit.) using nuclear microsatellite markers. Theoretical and Applied Genetics 104, 1290-1297.PubMedCrossRefGoogle Scholar
  27. Gutiérrez-Larena B, Fuertes-Aguilar J, Nieto-Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA hap-lotype sharing. Molecular Ecology 11, 1965-1974.PubMedCrossRefGoogle Scholar
  28. Hartl DL, Clark AG (1997) Principles of Population Genetics , 3 rd edition. Sinauer Associates, Sunderland.Google Scholar
  29. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247-276.CrossRefGoogle Scholar
  30. Hewitt GM (1999) Post-glacial recolonization of European biota. Biological Journal of the Linnean Society 68, 87-112.CrossRefGoogle Scholar
  31. Hewitt GM (2001) Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Molecular Ecology 10, 537-549.PubMedCrossRefGoogle Scholar
  32. Knowles L (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refu-gial models in montane grasshoppers. Molecular Ecology 10, 691-701.PubMedCrossRefGoogle Scholar
  33. Mariette S, Chagné D, Lézier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86, 469-479.PubMedCrossRefGoogle Scholar
  34. Mátyás G, Sperisen C (2001) Chloroplast DNA polymorphisms provide evidence for post-glacial re-colonisation of oaks (Quercus spp.) across the Swiss Alps. Theoretical and Applied Genetics 102, 12-20.CrossRefGoogle Scholar
  35. Mohanty A, Martín JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theoretical and Applied Genetics 100, 1304-1310.CrossRefGoogle Scholar
  36. Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. Forest Ecology and Management 156, 89-102.CrossRefGoogle Scholar
  37. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Czaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, deVries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156, 49-74.CrossRefGoogle Scholar
  38. Prus-Glowacki W, Stephan BR (1994) Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43, 7-14.Google Scholar
  39. Ribeiro MM (2001) Genetics of Pinus pinaster Aiton with cytoplasmic and nuclear markers. PhD Thesis, Swedish University of Agricultural Sciences.Google Scholar
  40. Ribeiro MM, Plomion C, Petit RJ, Vendramin GG, Szmidt AE (2001) Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theoretical and Applied Genetics 102, 97-103.CrossRefGoogle Scholar
  41. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219-1228.PubMedGoogle Scholar
  42. Rousset F (2001) Inferences from spatial population genetics. In: Handbook of Statistical Genetics (eds. Balding D, Bishop M, Cannings C), pp. 239-269. John Wiley & Sons, New York.Google Scholar
  43. Salvador L (1997) Estudio de la variabilidad genética de Pinus pinaster en España usando marcadores proteicos e isoenzimáticos. PhD Thesis, Universidad Politécnica de Madrid.Google Scholar
  44. Salvador L, Alía R, Agúndez D, Gil L (2000) Genetic variation and migration pathways of maritime pine (Pinus pinaster Ait.) in the Iberian Peninsula. Theoretical and Applied Genetics 100, 89-95.CrossRefGoogle Scholar
  45. Santucci F, Emerson B, Hewitt G (1998) Mitochondrial DNA phylogeography of European hedgehogs. Molecular Ecology 7, 1163-1172.PubMedCrossRefGoogle Scholar
  46. Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Molecular Ecology 8, 83-88.CrossRefGoogle Scholar
  47. Steward JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution 11, 608-613.CrossRefGoogle Scholar
  48. Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 8, 1923-1934.Google Scholar
  49. Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites. Theoretical and Applied Genetics 97, 456-463.CrossRefGoogle Scholar
  50. Willis KJ, Whittaker RJ (2000) The refugial debate. Science 287, 1406-1407.PubMedCrossRefGoogle Scholar
  51. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quaternary Research 53, 203-213.CrossRefGoogle Scholar
  52. Zanetto A, Kremer A (1995) Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity 75, 506-517.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Santiago C. González-Martínez
  • Aranzazu Gómez
  • José S. Carrión
  • Dolores Agúndez
  • Ricardo Alía
  • Luis Gil

There are no affiliations available

Personalised recommendations