Patterns of hemoglobin polymorphism [α-globin (HBA) and β-globin (HBB)] across the contact zone of two distinct phylogeographic lineages of the European rabbit (Oryctolagus cuniculus)

  • Rita Campos
  • Madalena Branco
  • Steven Weiss
  • Nuno Ferrand


Two loci, HBA and HBB, were studied for protein polymorphism across the contact zone of the European rabbit (Oryctolagus cuniculus). Six alleles were identified in HBA and two in HBB. Three alleles at the HBA locus were found to be restricted to some populations, while the other three revealed more broad geographic structure. An apparent substitution of the three major alleles in HBA along an Iberian southwest-northeast axis is proposed to be related to the two formerly described population units, including a hybrid allele within their contact zone. The two alleles of HBB are present in almost all populations at similar frequencies, obscuring the relationship between the two evolutionary units. The starkly contrasting pattern of allelic distribution among populations at these two loci – within a well-established bi-lineage phylo-geographic framework – strongly suggests that non-neutral evolutionary processes are involved at a large scale.


hemoglobin hybrid allele cytonuclear disequilibrium contact zone Iberia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold J (1993) Cytonuclear disequilibria in hybrid zones. Annual Review of Ecology and Systematics 24, 521-554.CrossRefGoogle Scholar
  2. Arntzen JW (2001) Genetic variation in the Italian crested newts, Triturus carnifex, and the origin of a non-native population north of the Alps. Biodiversity and Conservation 10, 971-987.CrossRefGoogle Scholar
  3. Asmussen MA, Arnold J (1991) The effects of admixture and population subdivision on cytonuclear disequilibria. Theoretical Population Biology 39, 273-300.PubMedCrossRefGoogle Scholar
  4. Asmussen, MA, Arnold J, Avise JC (1987) Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes. Genetics 115, 755-768.PubMedGoogle Scholar
  5. Asmussen MA, Arnold J, Avise JC (1989) The effects of assortative mating and migration on cytonuclear association in hybrid zones. Genetics 122, 923-934.PubMedGoogle Scholar
  6. Biju-Duval C, Ennafaa H, Dennebouy N, Monnerot M, Mignotte F, Soriguer RC, El Gaaied A, El Hili A, Mounolou J-C (1991) Mitochondrial DNA evolution in lagomorphs: origin of systematic heteroplasmy and organization of diversity in European rabbits. Journal of Molecular Evolution 33, 92-102.CrossRefGoogle Scholar
  7. Bradley RD, Bull JJ, Johson AD, Hillis DM (1993). Origin of a novel allele in a mammalian hybrid zone. Proceedings of the National Academy of Sciences, USA 90, 8939-8941.Google Scholar
  8. Branco M (2000) Estrutura genética das populações de coelho europeu ( Oryctolagus cuniculus) na Península Ibérica. Isolamento, diferenciação de duas unidades evolu-tivas, expansão geográfica e contacto secundário. PhD Thesis, University of Oporto.Google Scholar
  9. Branco M, Ferrand N (1998) Genetic polimorphism of the rabbit (Oryctolagus cuniculus) tissue acid phosphatases (ACP2 and ACP3). Comparative Biochemistry and Physiology B 120, 405-409.CrossRefGoogle Scholar
  10. Branco M, Ferrand N (2002) Genetic polymorphism of antithrombin III, haptoglobin, and haemopexin in wild and domestic European rabbits. Biochemical Genetics 40, 387-393.PubMedCrossRefGoogle Scholar
  11. Branco M, Ferrand N (2003) Biochemical and population genetics of the rabbit, Oryctolagus cuniculus: carbonic anhydrases Iand II, from the Iberian Peninsula and France. Biochemical Genetics 41, 391-404.PubMedCrossRefGoogle Scholar
  12. Branco M, Lopes G, Ferrand N (1998) Genetic polymorphism of properdin factor B (BF) in domestic rabbit. Animal Genetics 29, 135PubMedCrossRefGoogle Scholar
  13. Branco M, Machado JC, Ferrand N (1999) Extensive genetic polymorphism of peptidases A, B, C and D in wild rabbit (Oryctolagus cuniculus) populations from the Iberian Peninsula. Biochemical Genetics 37, 237-249.PubMedCrossRefGoogle Scholar
  14. Branco M, Ferrand N, Monnerot M (2000) Phylogeography of the European rabbit (Oryc-tolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity 85, 307-317.PubMedCrossRefGoogle Scholar
  15. Branco M, Ferrand N, Monnerot M, Templeton AR (2002) Postglacial dispersal of the Euro-pean rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56, 792-803.PubMedGoogle Scholar
  16. Bricker J, Garrick M (1974) An isoleucine-valine substitution in the β-chain of rabbit hemoglobin. Biochimica et Biophysica Acta 351, 437-441.PubMedGoogle Scholar
  17. Callou C (2003) De la garenne au clapier: étude archéozoologique du lapin en Europe occidental. Memoires du Muséum National d’Histoire Naturelle 189, 1-356.Google Scholar
  18. Chakraborty R, Fuerst PA, Nei M (1980) Statistical studies on protein polymorphism in natural populations. III. Distribution of allele frequencies and the number of alleles per locus. Genetics 94, 1039-1063.PubMedGoogle Scholar
  19. Ferrand N (1989) Biochemical and genetic studies on rabbit hemoglobin. I. Electrophoretic polymorphism of the β-chain. Biochemical Genetics 27, 673-678.PubMedGoogle Scholar
  20. Ferrand N (1990) Biochemical and genetic studies on rabbit hemoglobin. II. Electrophoretic polymorphism of the α-chain. Biochemical Genetics 28, 117-122.PubMedCrossRefGoogle Scholar
  21. Ferrand N (1995) Variação genética de proteínas em populações de coelho (Oryctolagus cuniculus). Análise da diferenciação subespecífica, subestruturação, expansão geográ-fica e domesticação. PhD Thesis, University of Oporto.Google Scholar
  22. Ferrand N, Carvalho G, Amorim A (1988) Transferrin (Tf) polymorphism in wild rabbit, (Oryctolagus cuniculus). Animal Genetics 19, 295-300.PubMedCrossRefGoogle Scholar
  23. Flux JEC (1994) The rabbit in continental Europe. In: The European Rabbit: The History Biology of a Successful Colonizer (eds. Thompson HV, King CM), pp. 22-63. Oxford Science Publications, Oxford.Google Scholar
  24. Galizzi A (1970) The amino acid sequence of the β-chains of rabbit hemoglobin. European Journal of Biochemistry 17, 49-55.PubMedCrossRefGoogle Scholar
  25. Garrick M, Bricker J, Garrick L (1974) An electrophoretically silent polymorphism for the beta chains of rabbit hemoglobin and associated polyribosome patterns. Genetics 76, 99-108.PubMedGoogle Scholar
  26. Geraldes A, Ferrand N (in press) A 7-bp insertion 3’ to the HGM box suggests the duplication and concerted evolution of the rabbit SRY gene. Genetics Selection Evolution.Google Scholar
  27. Geraldes A, Rogel-Gaillard C, Ferrand N (2005) High levels of nucleotide diversity in the European rabbit (Oryctolagus cuniculus) SRY gene. Animal Genetics 36, 349-351.PubMedCrossRefGoogle Scholar
  28. Hardison R (1991) Evolution of globin gene families. In: Evolution at the Molecular Level (eds. Selander RK, Clark AG, Whittam TS), pp 272-289. Sinauer Associates, Sunder-land.Google Scholar
  29. Hardison R (2001) New views of evolution and regulation of vertebrate α-like globin gene clusters from an orphaned gene in marsupials. Proceedings of the National Academy of Sciences, USA 98, 1327-1329.Google Scholar
  30. Hardison R, Krane D, Vandenbergh D, Cheng J-F, Mansberger J, Taddie J, Schwartz S, Huang X, Miller W (1991) Sequence and comparative analysis of the rabbit globin gene cluster reveals a rapid mode of evolution in a G+C-rich region of mammalian genomes. Journal of Molecular Biology 222, 233-249.PubMedCrossRefGoogle Scholar
  31. Hardy C, Callou C, Vigne JD, Casane D, Dennebouy N, Mounolou JC, Monnerot M (1995) Rabbit mitochondrial DNA diversity from prehistoric to modern times. Journal of Molecular Evolution 40, 227-237.PubMedCrossRefGoogle Scholar
  32. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247-276.CrossRefGoogle Scholar
  33. Hoffman SM, Brown WM (1995) The molecular mechanism underlying the ‘rare allele phenomenon’ in a subspecific hybrid zone of the California field mouse, Peromyscus cali-fornicus. Journal of Molecular Evolution 41, 1165-1169.PubMedGoogle Scholar
  34. Hudson RR (1990) Gene genealogies and the coalescent process in models with selection and recombination. In: Oxford Surveys in Evolutionary Biology (eds. Futuyma D, Antonovics J), pp. 1-44. Oxford University Press, Oxford.Google Scholar
  35. Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153-159.PubMedGoogle Scholar
  36. Hunter T, Munro A (1969) Allelic variants in the aminoacid sequence of the α-chain of rabbit hemoglobin. Nature 223, 1270-1272.PubMedCrossRefGoogle Scholar
  37. Lopez-Martinez N (1989) Revisión sistemática y biostratigráfica de los lagomorphos (Mam-malia) del neogeno y cuaternario de España. Memorias del Museo Paleontologico de la Universidade de Zaragoza, n3. Disputación General de Aragon, Zaragoza.Google Scholar
  38. Loreille O, Mounolou JC, Monnerot M (1997) History of the rabbit and ancient DNA. Comptes-rendus des Séances de la Société de Biologie 191, 537-544.Google Scholar
  39. Margot JB, Demers GW, Hardison RC (1989) Complete nucleotide sequence of the rabbit β -like globin gene cluster. Analysis of intergenic sequences and comparison with human β-like globin gene cluster. Journal of Molecular Biology 205, 15-40.PubMedCrossRefGoogle Scholar
  40. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genetical Research 23, 23-35.CrossRefGoogle Scholar
  41. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiver-sity hotspots for conservation priorities. Nature 403, 853-858.PubMedCrossRefGoogle Scholar
  42. Nauta MJ, Weissing FJ (1996) Constraints on allele size at microsatellite loci: implications for genetic differentiation Genetics 143, 1021-1032.PubMedGoogle Scholar
  43. Queney G, Ferrand N, Weiss S, Mougel F, Monnerot M (2001) Stationary distributions of microsatellite loci between divergent population groups of the european rabbit (Orycto-lagus cuniculus). Molecular Biology and Evolution 18, 2169-2178.PubMedGoogle Scholar
  44. Queney G, Vachot A-M, Brun J-M, Dennebouy N, Mulsat P, Monnerot M (2002) Different levels of human intervention in domestic rabbits: effects on genetic diversity. Journal of Heredity 93, 205-209.PubMedCrossRefGoogle Scholar
  45. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248-249.Google Scholar
  46. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES (2001) Linkage disequilibrium in the human genome. Nature 411, 199-204.PubMedCrossRefGoogle Scholar
  47. Schilthuizen M, Gittenberger E (1994) Parallel evolution of an sAat-‘hybrizyme’ in hybrid zones in Albinaria hippolyti (Boettger). Heredity 73, 244-248.Google Scholar
  48. Schilthuizen M, Hoekstra RF, Gittenberger E (1999) Selective increase of a rare haplotype in a land snail hybrid zone. Proceedings of the Royal Society of London, B 266, 2181-2185.Google Scholar
  49. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.PubMedGoogle Scholar
  50. Tishkoff SA, Dietzsch E, Speed W, Pakstis AJ, Kidd JR, Cheung K, Bonne-Tamir B, San-tachiara AS, Moral P, Krings M, Paabo S, Watson E, Risch N, Jenkins T, Kidd KK (1996) Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380-1387.PubMedCrossRefGoogle Scholar
  51. van der Loo W, Mougel F, Sánchez MS, Bouton C, Castien E, Fonseca A, Ferrand N, Soriguer R, Monnerot M (1999) Cytonuclear disequilibria in wild populations of rabbit (Oryctolagus cuniculus L.) suggest unequal turnover rates at the b locus (IGKC1). Immunogenetics 49, 629-643.PubMedCrossRefGoogle Scholar
  52. Vieira J, Ferrand N (1995) Four new alleles at the mannose-6-phosphate isomerase locus in rabbit. Animal Genetics 26, 37-38.PubMedCrossRefGoogle Scholar
  53. von Ehrenstein, G (1966) Translational variations in the amino acid sequence of the α-chain of rabbit hemoglobin. Cold Spring Harbor Symposium on Quantitative Biology 31, 705-714.Google Scholar
  54. Webb T, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic response. Annual Review of Ecology and Systematics 23, 141-173.CrossRefGoogle Scholar
  55. Weir BS and Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.CrossRefGoogle Scholar
  56. Wiehe T (1998) The effect of selective sweeps on the variance of the allele distribution of a linked multiallele locus: hitchhiking of microsatellites. Theoretical Population Biology 53, 272-283.PubMedCrossRefGoogle Scholar
  57. Woodruff DS (1989) Genetic anomalies associated with Cerion hybrid zones: the origin and maintenance of new electrophoretic variants called hybrizymes. Biological Journal of the Linnean Society of London 36, 281-294.Google Scholar
  58. Xu J, Hardison R (1989) Localization of the β-like globin gene cluster and the genes for parathyroid hormone and c-Harvey-ras 1 to region q14—q21 of rabbit chromosome 1 by in situ hybridization. Cytogenetics and Cell Genetics 52, 157-161.PubMedCrossRefGoogle Scholar
  59. Xu J, Hardison R (1991) Localization of the α-like globin gene cluster to region q12 of rabbit chromosome 6 by in situ hybridization. Genomics 9, 362–365.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Rita Campos
  • Madalena Branco
  • Steven Weiss
  • Nuno Ferrand

There are no affiliations available

Personalised recommendations