Advertisement

The evolutionary history of the European rabbit (Oryctolagus cuniculus): major patterns of population differentiation and geographic expansion inferred from protein polymorphism

  • Nuno Ferrand
  • Madalena Branco
Chapter

Abstract

The patterns of population differentiation and geographical expansion of the European rabbit (Oryctolagus cuniculus) remain largely unknown. Using gene frequency data for 20 polymorphic protein loci (102 alleles), we investigated the evolutionary history of the rabbit through the analysis of 13 representative populations and the use of both the neighbor-joining (NJ) and the unweighted pair-group method with arithmetic mean (UPGMA) trees. We also conducted a separate analysis comparing one domestic and one wild population with previously published results. Our data indicate that an ancient split separated southwestern Iberian populations from all others, including domestic breeds, and that this division may have corresponded to the emergence of the subspecies O.c. algirus and O.c. cuniculus. Separation times between the two major groups of populations were estimated with Nei’s genetic distance and were found to be highly discrepant with the mtDNA divergence estimate. The southwestern Iberian populations (algirusgroup) are more polymorphic than northern populations (cuniculusgroup), the latter displaying more than simply a subset of southern alleles. These results are thus compatible with the isolation of a marginal population or with a smaller long-term population size in the north. The high degree of genetic differentiation between the two subspecies allows the reconstruction of rabbit geographical expansion. France, Britain and other European countries, as well as Australia, were colonized by animals belonging to the cuniculus group, from which domestic breeds are exclusively derived. In contrast, Azorean island populations represent an expansion of the algirus group and show evidence of a strong bottleneck effect.

Keywords

protein polymorphism phylogenetic trees major groups of populations geographical expansion European rabbit Oryctolagus cuniculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altland K, Becher P, Banzhoff A (1987) Paraffin oil protected high resolution hybrid iso-electric focusing for the demonstration of substitutions of neutral aminoacids in denatured proteins: the case of four human transthyretin (prealbumin) variants associated with familial amyloidotic polineuropathy. Electrophoresis 8, 293-297.CrossRefGoogle Scholar
  2. Amorim A, Kompf J, Schunter F, Ritter H (1982) Aminolevulinate dehydratase (E.C.4.2.1.24): linkage analysis. Human Genetics 61, 48-49.PubMedCrossRefGoogle Scholar
  3. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85, 411-426.PubMedCrossRefGoogle Scholar
  4. Arana A, Zaragoza P, Rodellar C, Amorena B (1989) Blood biochemical polymorphisms as markers for genetic characteristics of wild Spanish and domestic rabbits. Genetica 79, 1-9.PubMedCrossRefGoogle Scholar
  5. Arnaud JM (1987) Os concheiros mesolíticos dos vales do Tejo e Sado: semelhanças e difer-enças. Arqueologia 15, 53-64.Google Scholar
  6. Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman & Hall, London.Google Scholar
  7. Avise JC, Hamrick JL (1997) Conservation Genetics: Case Histories from Nature. Chapman & Hall, New York.Google Scholar
  8. Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Ecology of Biological Invasions(eds. Groves RH, Burden JJ), pp. 21-33. Cambridge University Press, Cambridge.Google Scholar
  9. Beaty TH, Prenger VL, Virgil DG, Lewis B, Kwiterovich PO, Bachorik PS (1992) A genetic model for control of hypertriglyceridemia and apolipoprotein B levels in the John Hop-kins Colony of St. Thomas Hospital rabbits. Genetics 132, 1095-1104.PubMedGoogle Scholar
  10. Beaucournu JC (1980) Les ectoparasites du lapin de garenne Oryctolagus cuniculus: apports a son histoire. Bulletin Mensuel de l’Office National de la Chasse, (numéro special), 23-35.Google Scholar
  11. Beaucournu JC, Launay H (1990) Les puces de France et du Bassin Méditerranéen Occidental. Fédération Française des Societés de Sciences Naturelles, Paris.Google Scholar
  12. Ben Amor M (1998) Contribution à la reconstitution de l’histoire des populations de lapins des ĩles Kuriat et Zembra: Analyse du polymorphisme de l’ADN mitochondrial et de marqueurs protéiques/isoenzymatiques. PhD Thesis, University of Tunis II.Google Scholar
  13. Biju-Duval C, Ennafaa H, Dennebouy N, Monnerot N, Mignotte F, Soriguer R, El Gaied A, El Hili A, Mounolou JC (1991) Mitochondrial DNA evolution in lagomorphs: origin of systematic heteroplasmy and organization of diversity in european rabbits. Journal of Molecular Evolution 33, 92-102.CrossRefGoogle Scholar
  14. Boursot P, Auffray J-C, Britton-Davidian J, Bonhomme F (1993) The evolution of the house mice. Annual Review of Ecology and Systematics 24, 119-152.CrossRefGoogle Scholar
  15. Branco M, Ferrand N (1998) Genetic polymorphism of rabbit (Oryctolagus cuniculus) tissue acid phosphatases (ACP2 and ACP3). Comparative Biochemistry and Physiology 120B, 405-409.Google Scholar
  16. Branco M, Ferrand N (2002) Genetic polymorphism of antithrombin III, haptoglobin and haemopexin in the European rabbit (Oryctolagus cuniculus). Biochemical Genetics 40, 387-393.PubMedCrossRefGoogle Scholar
  17. Branco M, Ferrand N (2003) Biochemical and population genetics of rabbit (Oryctolagus cuniculus) carbonic anhydrases I and II in the Iberian Peninsula and France. Biochemical Genetics 41, 391-405PubMedCrossRefGoogle Scholar
  18. Branco M, Machado JC, Ferrand N (1999) Extensive genetic polymorphism of peptidases A, B, C and D, in wild rabbit (Oryctolagus cuniculus) populations from the Iberian Peninsula. Biochemical Genetics 37, 237-249.PubMedCrossRefGoogle Scholar
  19. Branco M, Ferrand N, Monnerot M (2000) Phylogeography of the European rabbit (Oryc-tolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity 85, 307-317.PubMedCrossRefGoogle Scholar
  20. Brown, AHD, Marshall DR, Weir BS (1981) Current status of the charge state model for protein polymorphism. In: Genetic Studies of Drosophila Populations(eds. Gibson JB, Oakeshott JG), pp. 15-43. Australian National University Press, Canberra.Google Scholar
  21. Cabrera J (1914) Fauna Ibérica. Museo Nacional de Ciências Naturales de Madrid, Madrid.Google Scholar
  22. Callou C (1995) Modifications de l’aire de répartition du lapin (Oryctolagus cuniculus) en France et en Espagne, du Pleistocène à l’époque actuelle. État de la question. Anthropo-zoologica 21, 95-114.Google Scholar
  23. Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological and linguistic dAta. Proceedings of the National Academy of Sciences, USA 85, 6002-6006.Google Scholar
  24. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press, Princeton.Google Scholar
  25. Cazenave PA, Benammar A, Sogn JA, Kindt TJ (1987) Immunoglobulin genes in the feral rabbit. In: The Rabbit in Contemporary Immunological Research(ed. Dubiski S), pp.148-163. Longman Scientific & Technical, John Wiley & Sons, New York.Google Scholar
  26. Chikhi L, Destro-Bisol G, Bertorelle G, Pascali V, Barbujani G (1998) Clines of nuclear DNA markers suggest a largely Neolithic ancestry of the European gene pool. Proceedings of the National Academy of Sciences, USA 95, 9053-9058.CrossRefGoogle Scholar
  27. Clutton-Brock J (1987) A Natural History of Domesticated Animals. Cambridge University Press, Cambridge.Clutton-Brock J (1992) Domestication of animals. In: The Cambridge Encyclopedia of Human Evolution(eds. Jones S, Martin R, Pilbeam D), pp. 380-385. Cambridge University Press, Cambridge.Google Scholar
  28. Comes HP, Abbott RJ (1998) The relative importance of historical events and gene flow on the population structure of a Mediterranean ragwort Senecio gallicus(Asteraceae). Evolution 52, 355-367.CrossRefGoogle Scholar
  29. Cooper SJB, Ibrahim KM, Hewitt GH (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology 4, 49-60.PubMedGoogle Scholar
  30. Curtain CC, Wood DH, Sobey WR (1973) The distribution of immunoglobulin allotypes in rabbit populations in Australia and on Macquarie Island. Animal Blood Groups and Biochemical Genetics 4, 101-109.Google Scholar
  31. Dobson M (1998) Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Review 28, 77-88.CrossRefGoogle Scholar
  32. Donard E (1982) Recherches sur les léporidés quaternaires (Pleistocène moyen et supérieur, Holocène). PhD Thesis, University of Bordeaux I.Google Scholar
  33. Dubiski S (1987) The Rabbit in Contemporary Immunological Research. Longman Scientific & Technical, John Wiley & Sons, New York.Google Scholar
  34. Esteves PJ, Lanning D, Ferrand N, Knight KL, Zhai SK, van der Loo W (2005) The evolution of the immunoglobulin heavy chain variable region (IgVH) in Leporids: an unusual case of transspecies polymorphism. Immunogenetics 57, 874-882.PubMedCrossRefGoogle Scholar
  35. Farris JS (1972) Estimating phylogenetic trees from distance matrices. American Naturalist 106, 645-668.CrossRefGoogle Scholar
  36. Felsenstein J (1982) How can we infer geography and history from gene frequencies? Journal of Theoretical Biology 96, 9-20.PubMedCrossRefGoogle Scholar
  37. Ferrand N (1989) Biochemical and genetic studies on rabbit hemoglobin. I. Electrophoretic polymorphism of the β-chain. Biochemical Genetics 27, 673-678.PubMedGoogle Scholar
  38. Ferrand N (1990) Biochemical and genetic studies on rabbit hemoglobin. II. Electrophoretic polymorphism of the α-chain. Biochemical Genetics 28, 117-122.PubMedCrossRefGoogle Scholar
  39. Ferrand N (1995) Variação genética de proteínas em populações de coelho (Oryctolagus cuniculus). Análise da diferenciação subespecífica, subestruturação, expansão geográ-fica e domesticação. PhD Thesis, University of Oporto.Google Scholar
  40. Ferrand N, Rocha J (1992) Demonstration of serum albumin (ALB) polymorphism in wild rabbit (Oryctolagus cuniculus) by means of isoelectric focusing. Animal Genetics 23, 275-278.PubMedCrossRefGoogle Scholar
  41. Ferrand N, Carvalho G, Amorim A (1988) Transferrin (Tf) polymorphism in wild rabbit,Oryctolagus cuniculus. Animal Genetics 19, 295-300.PubMedCrossRefGoogle Scholar
  42. Flux JEC (1994) World distribution. In: The European Rabbit: The History and Biology of a Successful Colonizer (eds. Thompson HV, King CM), pp. 8-21. Oxford Science Publications, Oxford.Google Scholar
  43. Flux JEC, Fullagar PJ (1992) World distribution of the rabbit Oryctolagus cuniculuson islands. Mammal Review 22, 151-205.Google Scholar
  44. Gibb JA (1990) The European Rabbit Oryctolagus cuniculus. In: Rabbits, Hares and Pikas(eds. Chapman JA, Flux JEC), pp. 116-129. International Union for Conservation of Nature and Natural Resources, Gland.Google Scholar
  45. Hardy C, Vigne JD, Casane D, Dennebouy N, Mounolou JC, Monnerot M (1994) Origin of European rabbit (Oryctolagus cuniculus) in a Mediterranean island: zooarchaeology and ancient DNA examination. Journal of Evolutionary Biology 7, 217-226.CrossRefGoogle Scholar
  46. Hardy C, Callou C, Vigne JD, Casane D, Dennebouy N, Mounolou JC, Monnerot M (1995) Rabbit mitochondrial DNA diversity from prehistoric to modern times. Journal of Molecular Evolution 40, 227-237.PubMedCrossRefGoogle Scholar
  47. Harris H, Hopkinson DA (1976) Handbook of Enzyme Electrophoresis in Human Genetics.North-Holland Publishers, Amsterdam.Google Scholar
  48. Hartl GB (1987) Biochemical differentiation between the wild rabbit (Oryctolagus cuniculus L.), the domestic rabbit and the brown hare (Lepus europaeus Pallas). Zeitschrift für Zoologische Systematik und Evolutionsforschung 24, 309-316.Google Scholar
  49. Karl SA, Avise J (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256, 100-102.PubMedCrossRefGoogle Scholar
  50. Kunkele J, Von-Holst D (1996) Natal dispersal in the European wild rabbit. Animal Behaviour 58, 1047-1059.CrossRefGoogle Scholar
  51. Langman RE (1989) The Immune System. Academic Press, New York.Google Scholar
  52. Launay H, Beaucournu JC (1982) Critères taxinomiques et essai de paléobiogeographie de deux espèces jumelles, Xenopsylla ramesis(Rothschild 1904) et Xenopsylla cunicularisSmit 1957 (Siph. Pulicidae): approche biométrique. Annales de la Societé Entomologique de France(N.S.) 18, 43-54.Google Scholar
  53. Leisner V (1983) As diferentes fases do Neolítico em Portugal. Arqueologia 7, 7-15.Google Scholar
  54. Lentacker A (1986) Preliminary results of the fauna of Cabeço de Amoreira and Cabeço de Arruda (Muge, Portugal). Trabalhos de Antropologia e Etnologia 26, 9-26.Google Scholar
  55. Lewontin RC (1970) The units of selection. Annual Reviews in Ecology and Systematics 1 , 1-18.CrossRefGoogle Scholar
  56. Lewontin RC (1991) Twenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128, 657-662.PubMedGoogle Scholar
  57. Lopez-Martinez N (1989) Revision sistematica y biostratigrafica de los lagomorphos (Mam-malia) del neogeno y cuaternario de España. Memorias del Museo Paleontológico de la Universidad de Zaragoza, Diputación General de Aragón.Google Scholar
  58. Mage R, Lieberman R, Potter M, Terry WT (1973) The immunoglobulin allotypes. In: The Antigens,vol. 1 (ed. Sela M), pp. 299-376. Academic Press, New York.Google Scholar
  59. Monnerot M, Vigne JD, Biju-Duval C, Casane D, Callou C, Hardy C, Mougel F, Soriguer R, Dennebouy N, Mounolou JC (1994) Rabbit and man: genetic and historic approach.Genetics, Selection, Evolution 26 (Supplement 1), 167-182.Google Scholar
  60. Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70, 3321-3323.Google Scholar
  61. Nei M (1975) Molecular Population Genetics and Evolution. North-Holland, Amsterdam.Google Scholar
  62. Nei M (1978) The theory of genetic distance and evolution of human races. Japanese Journal of Human Genetics 23, 341-369.PubMedCrossRefGoogle Scholar
  63. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  64. Nei M (1995) Genetic support for the out-of-Africa theory of human evolution. Proceedings of the National Academy of Sciences, USA 92, 6720-6722.Google Scholar
  65. Nei M, Roychoudhury AK (1982) Genetic relationship and evolution of human races. Evolutionary Biology 14, 1-59.Google Scholar
  66. Nei M, Roychoudhury AK (1993) Evolutionary relationships of human populations on a global scale. Molecular Biology and Evolution 10, 927-943.PubMedGoogle Scholar
  67. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19, 153-170.PubMedCrossRefGoogle Scholar
  68. Ota T (1993) DISPAN: Genetic Distance and Phylogenetic Analysis. Institute of Molecular and Evolutionary Genetics, Pennsylvania State University, University Park.Google Scholar
  69. Pages MV (1980) Essai de reconstitution de l’histoire du lapin de garenne en Europe. Bulletin Mensuel de l’Office National de la Chasse(numéro special), 13-21.Google Scholar
  70. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molecular Biology and Evolution 5, 568-583.PubMedGoogle Scholar
  71. Peterka M, Hartl GB (1992) Biochemical-genetic variation and differentiation in wild and domestic rabbits. On the significance of genetic distances, dendrograms and the estimation of divergence times in domestication studies. Zeitschrift für Zoologische Systematik und Evolutionsforschung 30, 129-141.Google Scholar
  72. Queney G, Ferrand N, Marchandeau S, Azevedo M, Mougel F, Branco M, Monnerot M (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Molecular Ecology 9, 1253-1264.PubMedCrossRefGoogle Scholar
  73. Ramshaw JAM, Coyne JA, Lewontin RC (1979) The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 93, 1019-1037.PubMedGoogle Scholar
  74. Reumer JWF, Sanders EAC (1984) Changes in the vertebrate fauna of Menorca in prehistoric and classical times. Zeitschrift für Säugetierkunde 49, 321-325.Google Scholar
  75. Richardson BJ, Rogers PM, Hewitt GM (1980) Ecological genetics of the wild rabbit in Aus-tralia. II. Protein variation in British, French and Australian rabbits and the geographical distribution of the variation in Australia. Australian Journal of Biological Sciences 33, 371-383.Google Scholar
  76. Righetti PG (1990) Immobilized pH Gradients: Theory and Methodology. Elsevier, Ams-terdam.Google Scholar
  77. Righetti PG, Gianazza E, Bianchi-Bosisio A, Wajcman H, Cossu G (1989) Electrophoretically silent hemoglobin mutants as revealed by isoelectric focusing in immobilized pH gradients. Electrophoresis 10, 595-599.PubMedCrossRefGoogle Scholar
  78. Rogers PM, Arthur CP, Soriguer R (1994) The rabbit in continental Europe. In: The Euro-pean Rabbit: The History and Biology of a Successful Colonizer(eds. Thompson HV, King CM), pp. 22-63. Oxford Science Publications, Oxford.Google Scholar
  79. Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-square, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution 35, 367-375.PubMedCrossRefGoogle Scholar
  80. Saitou N, Imanishi T (1989) Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phy-logenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution 6, 514-525.Google Scholar
  81. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phy-logenetic trees. Molecular Biology and Evolution 4, 406-425.PubMedGoogle Scholar
  82. Sharples CM, Fa JE, Bell DJ (1996) Geographical variation in size in the European rabbit Oryctolagus cuniculus (Lagomorpha: Leporidae) in Western Europe and North Africa. Zoological Journal of the Linnean Society 117, 141-158.CrossRefGoogle Scholar
  83. Siebert G, Kompf J, Ritter H (1980) Galactose-1-phosphate uridyltransferase (E.C.2.7.7.11): a simple routine method for detecting individuals heterozygous for the silent allele Gt0. Human Genetics 54, 273-275.PubMedCrossRefGoogle Scholar
  84. Singh RS, Rhomberg LR (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics 117, 255-271.PubMedGoogle Scholar
  85. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. W. H. Freeman, San Francisco. Su C, Nei M (1999) Fifty million years old polymorphism at an immunoglobulin variable region gene locus in the rabbit evolutionary lineage. Proceedings of the National Academy of Sciences, USA96, 9710-9715.Google Scholar
  86. Sugiura M, Ito Y, Hirano K, Sawaki S (1977) Detection of dipeptidase and tripeptidase activities on polyacrylamide gel and cellulose acetate gel by the reduction of tetrazolium salts. Analytical Biochemistry 81, 481-484.PubMedCrossRefGoogle Scholar
  87. Swofford DL, Selander RB (1989) BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Illinois Natural History Survey.Google Scholar
  88. Thompson HV, King CM(eds.) (1994) The European Rabbit: The History and Biology of a Successful Colonizer. Oxford Science Publications, Oxford.Google Scholar
  89. van der Loo W (1987) Studies on the adaptive significance of the immunoglobulin alleles (Ig allotypes) in wild rabbit. In: The Rabbit in Contemporary Immunological Research (ed. Dubiski S), pp. 164-190. Longman Scientific & Technical, John Wiley & Sons, New York.Google Scholar
  90. van der Loo W (1993) Variance analysis of immunoglobulin alleles in natural populations of rabbit (Oryctolagus cuniculus): the extensive interallelic divergence at the b locus of the immunoglobulin light chain constant region could be the outcome of overdominance-type selection. Genetics 135, 171-187.Google Scholar
  91. van der Loo W, Verdoodt B (1992) Patterns of interallelic divergence at the rabbit b locus of the immunoglobulin light chain constant region are in agreement with population genetical evidence for overdominant selection. Genetics 132, 1105-1117.PubMedGoogle Scholar
  92. van der Loo W, Arthur CP, Drees-Wallage M, Richardson B (1987) Nonrandom allele associations between unlinked protein loci: are the polymorphisms of the immunoglobulin constant regions adaptive? Proceedings of the National Academy of Sciences, USA 84, 3075-3079.Google Scholar
  93. van der Loo W, Ferrand N, Soriguer R (1991) Estimation of gene diversity at the b locus of the constant region of the immunoglobulin light chain in natural populations of Euro-pean rabbit (Oryctolagus cuniculus) in Portugal, Andalusia and on the Azorean islands. Genetics. 127, 789-799.PubMedGoogle Scholar
  94. van der Loo W, Mougel F, Sánchez MS, Bouton C, Castien E, Fonseca A, Ferrand N, Soriguer R, Monnerot M (1999) Cytonuclear disequilibria in wild populations of rabbit (Oryctolagus cuniculus L.) suggest unequal allele turnover rates at the b locus (IGKC1). Immunogenetics. 49, 629-643.PubMedCrossRefGoogle Scholar
  95. Vieira J (1993) Utilização de marcadores genéticos na caracterização e certificação de pop-ulações domésticas e selvagens de coelho (Oryctolagus cuniculus. MSc Thesis, University of Oporto.Google Scholar
  96. Vieira J, Ferrand N (1995) Four new alleles at the mannose-6-phosphate isomerase locus in rabbit. Animal Genetics 26, 37-38.PubMedCrossRefGoogle Scholar
  97. Vigne JD (1988) Données préliminaires sur l’histoire du peuplement mammalian de l’ilot de Zembra (Tunisie). Mammalia 52, 567-574.Google Scholar
  98. Villafuerte R (1994) Riesgo de predación y estrategias defensivas del conejo, Oryctolagus cuniculus, en el Parque Nacional de Doñana. PhD Thesis, University of Cordoba.Google Scholar
  99. Weisbroth SH, Flatt RE, Kraus AL (1974) The Biology of the Laboratory Rabbit. Academic Press, Orlando.Google Scholar
  100. Williams K, Parer I, Conan B, Burley J, Braysher M (1995) Managing Vertebrate Pests: Rabbits. CSIRO Division of Wildlife and Ecology, Australian Government Publishing Service, Canberra.Google Scholar
  101. Zapolski EJ, Princiotto JV (1980) Binding of iron from nitrilotriacetate analogs by human transferrin. Biochemistry 19, 3599-3603.PubMedCrossRefGoogle Scholar
  102. Zeuner FE (1963) A History of Domesticated Animals. Hutchinson, London.Google Scholar
  103. Zhivolovsky LA, Feldman MW (1995) Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences, Ut the mannose-6-phosphate isomerase locus in rabbit. Animal Genetics 26, 37-38.Google Scholar
  104. Vigne JD (1988) Données préliminaires sur l’histoire du peuplement mammalian de l’ilot de Zembra (Tunisie). Mammalia 52, 567-574.Google Scholar
  105. Villafuerte R (1994) Riesgo de predación y estrategias defensivas del conejo, Oryctolagus cuniculus, en el Parque Nacional de Doñana. PhD Thesis, University of Cordoba.Google Scholar
  106. Weisbroth SH, Flatt RE, Kraus AL (1974) The Biology of the Laboratory Rabbit. Academic Press, Orlando.Google Scholar
  107. Williams K, Parer I, Conan B, Burley J, Braysher M (1995) Managing Vertebrate Pests: Rabbits. CSIRO Division of Wildlife and Ecology, Australian Government Publishing Service, Canberra.Google Scholar
  108. Zapolski EJ, Princiotto JV (1980) Binding of iron from nitrilotriacetate analogs by human transferrin. Biochemistry 19, 3599-3603.PubMedCrossRefGoogle Scholar
  109. Zeuner FE (1963) A History of Domesticated Animals. Hutchinson, London.Google Scholar
  110. Zhivolovsky LA, Feldman MW (1995) Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences, USA 92, 11549-11552.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Nuno Ferrand
  • Madalena Branco

There are no affiliations available

Personalised recommendations