Skip to main content

SOS Methods in Calculations of Electronic NLO Properties

  • Chapter

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 1))

Abstract

The sum-over-states technique which is extensively used in calculations of nonlinear optical properties, is presented and discussed. We focus on the electronic contributions to first- and second-order hyperpolarizability. The SOS approach to the calculation of the multiphoton absorption is also discussed. The various approximations to exact sum-over-states formulae are presented. In particular, we describe the so-called few-levels models, which are widely used in qualitative analysis of nonlinear electrical properties

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, J., Shirai, Y., Nemoto, N., Miyata, F., Nagase, Y.: Heterocyclic piridinium betaines, a new class of second-order nonlinear optical materials: Combined theoretical and experimental investigation of first-order hyperpolarizability through ab initio, INDO/S, and hyper-rayleigh scattering. J. Phys. Chem. B 101, 576–582 (1997)

    CAS  Google Scholar 

  2. Albert, I.D.L., Marks, T.J., Ratner, M.A.: Conformationally-induced geometric electron localization. Interrupted conjugation, very large hyperpolarizabilities, and sizable infrared absorption in simple twisted molecular chromophores. J. Am. Chem. Soc. 119, 3155–3156 (1997)

    CAS  Google Scholar 

  3. Albota, M., Beljonne, D., Brédas, J.-L., Ehrlich, J.E., Fu, J.-Y., Heikal, A.A., Hess, S.E., Kogej, T., Levin, M.D., Marder, S.R., McCord-Maughon, D., Perry, J.W., Röckel, H., Rumi, M.: Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656 (1998)

    PubMed  ADS  CAS  Google Scholar 

  4. André, J.-M., Barbier, C., Bodart, V., Delhalle, J.: Trends in calculations of polarizabilities and hyperpolarizabilities of long molecules. In: Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 2. Academc, New York (1987)

    Google Scholar 

  5. Åstrand, P.-O., Ruud, K., Sundholm, D.: A modified variation-perturbation approach to zero-point vibrational motion. Theor. Chem. Acc. 103, 365–373 (2000)

    Google Scholar 

  6. Bartkowiak, W.: Theoretical study of hyperpolarizabilities of aminobenzodifuranone. Synth. Met. 109, 109–111 (2000)

    CAS  Google Scholar 

  7. Bartkowiak, W., Lipiński, J.: Conformation and solvent dependence of the first molecular hyperpolarizability of piridinium-N-phenolate betaine dyes. Quantum chemical calculations. J. Phys. Chem. A 102, 5236–5240 (1998)

    CAS  Google Scholar 

  8. Bartkowiak, W., Lipiński, J.: Solvent effect on the nonlinear optical properties of para-nitroaniline studied by Langevin dipoles-Monte Carlo (LD/MC) approach. Computers Chem. 22, 31–37 (1998)

    CAS  Google Scholar 

  9. Bartkowiak, W., Strasburger, K., Leszczynski, J.: Studies of molecular hyperpolarizabilities (β, γ) for 4-nitroaniline (PNA). The application of quantum mechanical/Langevin dipoles/Monte Carlo (QM/LD/MC) and sum-over-orbitals (SOO) methods. J. Mol. Struct. (THEOCHEM) 549, 159–163 (2001)

    CAS  Google Scholar 

  10. Bartkowiak, W., Zaleśny, R., Leszczynski, J.: Relation between bond-length alternation and two-photon absorption of push-pull conjugated molecules: A quantum-chemical study. Chem. Phys. 287, 103–112 (2003)

    CAS  Google Scholar 

  11. Bartkowiak, W., Zaleśny, R., Niewodniczański, W., Leszczynski, J.: Quantum chemical calculations of the first- and second-order hyperpolarizability of molecules in solutions. J. Phys. Chem. A 105, 10702–10710 (2001)

    CAS  Google Scholar 

  12. Barzoukas, M., Runser, C., Fort, A., Blanchard-Desce, M.: A two-state description of (hyper) polarizabilities of push-pull molecules based on a two-form model. Chem. Phys. Lett. 257, 531–537 (1996)

    CAS  Google Scholar 

  13. Birge, R.R., Pierce, B.M.: A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores. J. Chem. Phys. 70, 165–178 (1979)

    ADS  CAS  Google Scholar 

  14. Bishop, D.M.: Molecular vibrational and rotational motion in static and dynamic electric field. Rev. Mod. Phys. 62, 343–374 (1990)

    ADS  CAS  Google Scholar 

  15. Bishop, D.M.: Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities. J. Chem. Phys. 100, 6535–6542 (1994)

    ADS  CAS  Google Scholar 

  16. Bishop, D.M.: Molecular vibration and nonlinear optics. Adv. Chem. Phys. 104, 1–40 (1998)

    CAS  MathSciNet  Google Scholar 

  17. Bishop, D.M., Champagne, B., Kirtman, B.: Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model. J. Chem. Phys. 109, 9987–9994 (1998)

    ADS  CAS  Google Scholar 

  18. Bishop, D.M., Kirtman, B.: A peturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. J. Chem. Phys. 95, 2646–2658 (1991)

    ADS  CAS  Google Scholar 

  19. Bishop, D.M., Kirtman, B., Champagne, B.: Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J. Chem. Phys. 103, 365–373 (1997)

    Google Scholar 

  20. Bishop, D.M., Norman, P.: Calculations of dynamic hyperpolarizabilities for small and medium sized molecules. In: Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 9. Academic, San Diego (2001)

    Google Scholar 

  21. Blanchard-Desce, M., Barzoukas, M.: Two-form two-state analysis of polarizabilities of push-pull molecules. J. Opt. Soc. Am. B 15, 302–307 (1998)

    ADS  CAS  Google Scholar 

  22. Bourhill, G., Brédas, J.L., Cheng, L.-T., Marder, S.R., Meyers, F., Perry, J.W., Tiemann, B.G.: Experimental demonstration of the dependence of the first hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation. J. Am. Chem. Soc. 116, 2619–2620 (1994)

    CAS  Google Scholar 

  23. Brédas, J.L., Adant, C., Tackx, P., Persoons, A.: Third-order nonlinear optical response in organic materials: Theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994)

    Google Scholar 

  24. Bursi, R., Lankhorst, M., Feil, D.: Uncoupled Hartree-Fock calculations of the polarizability and hyperpolarizabilities of nitrophenols. J. Comp. Chem. 16, 545–562 (1995)

    CAS  Google Scholar 

  25. Champagne, B., Jacquemin, D., André, J.-M., Kirtman, B.: Ab initio coupled Hartree-Fock investigation of the static first hyperpolarizability of model all-trans-polymethineimine oligomers of increasing size. J. Phys. Chem. A 101, 3158–3165 (1997)

    CAS  Google Scholar 

  26. Champagne, B., Kirtman, B.: Theoretical approach to the design of organic molecular and polymeric nonlinear optical materials. In: Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 9. Academic, San Diego (2001)

    Google Scholar 

  27. Chen, G., Lu, D., Goddard, III, W.A.: Valence-bond charge-transfer solvation model for nonlinear optical properties of organic molecules in polar solvents. J. Chem. Phys. 101, 5860–5864 (1994)

    ADS  CAS  Google Scholar 

  28. Cohen, H.D., Roothaan, C.C.J.: Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory for closed-shell systems. J. Chem. Phys. 43, S34–S39 (1965)

    CAS  Google Scholar 

  29. Cronstrand, P., Luo, Y., Ågren, H.: Generalized few-state models for two-photon absorption of conjugated molecules. Chem. Phys. Lett. 352, 262–269 (2002)

    CAS  Google Scholar 

  30. Cronstrand, P., Norman, P., Luo, Y., Ågren, H.: Few-states models for three-photon absorption. J. Chem. Phys. 121, 2020–2029 (2004)

    PubMed  ADS  CAS  Google Scholar 

  31. Dalgarno, A.: Perturbation theory for atomic systems. Proc. Roy. Soc. (London) A251, 282–290 (1959)

    MathSciNet  Google Scholar 

  32. Dalgarno, A., McNamee, J.M.: Calculation of polarizabilities and shielding factors. J. Chem. Phys. 35, 1517–1518 (1961)

    CAS  Google Scholar 

  33. Dehu, C., Meyers, F., Hendrickx, E., Clays, K., Persoons, A., Marder, S.R., Brédas, J.L.: Solvent effects on the second-order nonlinear optical response of π-conjugated molecules: A combined evaluation through self-consistent reaction field calculations and hyper-Rayleigh scaterring measurements. J. Am. Chem. Soc. 117, 10127–10128 (1995)

    CAS  Google Scholar 

  34. Di Bella, S., Marks, T.J., Ratner, M.A.: Environmental efects on nonlinear optical chromophore performance. Calculation of molecular quadratic hyperpolarizabilities in solvating media. J. Am. Chem. Soc. 116, 4440–4445 (1994)

    Google Scholar 

  35. Dick, B., Hohlneicher, G.: Importance of initial and final states as intermediate states in two-photon spectroscopy of polar molecules. J. Chem. Phys. 76, 5755–5760 (1982)

    ADS  CAS  Google Scholar 

  36. Dirk, C.W., Cheng, L.-T., Kuzyk, M.G.: A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int. J. Quant. Chem. 43, 27–36 (1992)

    CAS  Google Scholar 

  37. Fanti, M., Fowler, P.W., Orlandi, G., Zerbetto, F.: Ab initio scaling of the second hyperpolarizability of carbon cages. J. Chem. Phys. 107, 5072–5075 (1997)

    ADS  CAS  Google Scholar 

  38. Freo, L. Del, Terenziani, F., Painelli, A.: Static nonlinear optical susceptibilities: Testing approximation schemes against exact results. J. Chem. Phys. 116, 755–761 (2002)

    ADS  Google Scholar 

  39. Hamada, T.: Ab initio estimation of quadratic hyperpolarizabilities of organic molecules: Sum over states vs. coupled perturbed Hartree-Fock. Nonlinear Optics 16, 279–289 (1996)

    CAS  Google Scholar 

  40. Hameka, H.F.: Calculation of linear and nonlinear electric susceptibilities of conjugated hydrocarbon chains. J. Chem. Phys. 67, 2935–2942 (1977)

    ADS  CAS  Google Scholar 

  41. Hrobarik, P., Zahradnik, P., Fabian, W.M.F.: Computational design of benzothiazole-derived push-pull dyes with high molecular quadratic hyperpolarizabilities. Phys. Chem. Chem. Phys. 6, 495–501 (2004)

    CAS  Google Scholar 

  42. Jacquemin, D., Champagne, B., André, J.-M.: Molecular orbital expressions for approximate uncoupled Hartree-Fock second hyperpolarizabilities. A Pariser-Parr-Pople assessment for model polyacetylene chains. Chem. Phys. 197, 107–127 (1995)

    CAS  Google Scholar 

  43. Kanis, D.R., Marks, T.J., Ratner, M.A.: Calculation and electronic description of molecular quadratic hyperpolarizabilities employing the ZINDO-SOS quantum chemical formalism. Chromophore architecture and substituent effects. Nonlinear Optics 6, 317–335 (1994)

    CAS  Google Scholar 

  44. Keinan, S., Zojer, E., Brédas, J.-L., Ratner, M.A., Marks, T.J.: Twisted π-system electro-optic chromophores. A CIS vs. MRD-CI theoretical investigation. J. Mol. Struct. (Theochem) 633, 227–235 (2003)

    CAS  Google Scholar 

  45. Kobko, N., Masunov, A., Tretiak, S.: Calculations of the third-order nonlinear optical responses in push-pull chromophores with a time-dependent density functional theory. Chem. Phys. Lett. 392, 444–451 (2004)

    CAS  Google Scholar 

  46. Kogej, T., Beljonne, D., Meyers, F., Perry, J.W., Marder, S.R., Brédas, J.L.: Mechanism for enhancement of two-photon absorption in donor-acceptor conjugated chromophores. Chem. Phys. Lett. 298, 1–6 (1998)

    CAS  Google Scholar 

  47. Kurtz, H.J., Stewart, J.J.P., Dieter, K.M.: Calculation of the nonlinear optical properties of molecules. J. Comp. Chem. 11, 82–87 (1990)

    CAS  Google Scholar 

  48. Kuzyk, M.G., Dirk, C.W.: Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys. Rev. A 41, 5098–5109 (1990)

    PubMed  ADS  CAS  Google Scholar 

  49. Lalama, S.J., Garito, A.F.: Origin of the nonlinear second-order optical susceptibility of organic systems. Phys. Rev. A 20, 1179–1194 (1979)

    ADS  CAS  Google Scholar 

  50. Langhoff, P.W., Karplus, M., Hurst, R.P.: Approximations to Hartree-Fock perturbation theory. J. Chem. Phys. 44, 505–514 (1966)

    CAS  MathSciNet  Google Scholar 

  51. Lee, W.-H., Lee, H., Kim, J.-A., Choi, J.-H., Cho, M., Jeon, S.-J., Cho, B.R.: Two-photon absorption and nonlinear optical properties of octupolar molecules. J. Am. Chem. Soc. 123, 10658–10667 (2001)

    PubMed  CAS  Google Scholar 

  52. Li, D., Marks, T.J., Ratner, M.A.: π electron calculations for prediciting non-linear optical properties of molecules. Chem. Phys. Lett. 131, 370–375 (1986)

    ADS  CAS  Google Scholar 

  53. Li, D., Ratner, M., Marks, T.J.: Molecular and macromolecular nonlinear optical materials. Probing architecture/electronic structure/frequency doubling relationship via SCF-LCAO MECI π electron formalism. J. Am. Chem. Soc. 110, 1707–1715 (1988)

    CAS  Google Scholar 

  54. Liebmann, S.P., Moskowitz, J.W.: Polarizabilities and hyperpolarizabilities of small polyatomic molecules in the uncoupled Hartree-Fock approximation. J. Chem. Phys. 54, 3622–3631 (1971)

    CAS  Google Scholar 

  55. Lipiński, J.: Modified all-valence INDO/spd method for ground and excited state properties of isolated molecules and molecular complexes. Int. J. Quant. Chem. 34, 423–434 (1988)

    Google Scholar 

  56. Lipiński, J.: On the consequences of the violation of the Hellmann-Feynman theorem in calculations of electric properties of molecules. Chem. Phys. Lett. 363, 313–318 (2002)

    Google Scholar 

  57. Lipiński, J., Bartkowiak, W.: Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations. Chem. Phys. 245, 263–276 (1999)

    Google Scholar 

  58. Liu, X.-J., Feng, J.-K., Ren, A.-M., Zhou, X.: Theoretical studies of the spectra and two-photon absorption cross section for porphyrin and carbaporphirin. Chem. Phys. Lett. 373, 197–206 (2003)

    CAS  Google Scholar 

  59. Lu, D., Chen, G., Perry, J.W., Goddard, III, W.A.: Valence-bond charge-transfer model for nonlinear optical properties of charge-transfer organic molecules. J. Am. Chem. Soc. 116, 10679–10685 (1994)

    CAS  Google Scholar 

  60. Luis, J.M., Martí, J., Duran, M., Andrés, J.L.: Nuclear relaxation and vibrational contributions to the static electrical properties of polyatomic molecules: Beyond the Hartree-Fock approximation. Chem. Phys. 217, 29–42 (1997)

    CAS  Google Scholar 

  61. Luo, Y., Ågren, H., Knuts, S., Minaev, B.F., Jørgensen, P.: Response theory calculations of the vibrationally induced 1A1g - 1B1u two-photon spectrum of benzene. Chem. Phys. Lett. 209, 513–518 (1993)

    CAS  Google Scholar 

  62. Luo, Y., Ågren, H., Vahtras, O.: The hyperpolarizability dispersion of para-nitroaniline. Chem. Phys. Lett. 207, 190–194 (1993)

    ADS  CAS  Google Scholar 

  63. Luo, Y., Norman, P., Macak, P., Ågren, H.: Solvent-induced two-photon absorption of a push-pull molecule. J. Phys. Chem. A 104, 4718–4722 (2000)

    CAS  Google Scholar 

  64. Göppert-Mayer, M.: Über Elementarakte mit zwei Quantensprungen. Ann. Phys. 9, 273–294 (1931)

    MATH  Google Scholar 

  65. Macak, P., Luo, Y., Ågren, H.: Simulations of vibronic profiles in two-photon absorption. Chem. Phys. Lett. 330, 447–456 (2000)

    CAS  Google Scholar 

  66. Macak, P., Luo, Y., Norman, P., Ågren, H.: Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures. J. Chem. Phys. 113, 7055–7061 (2000)

    ADS  CAS  Google Scholar 

  67. Marchese, F.T., Seliskar, C.J., Jaffé, H.H.: The use of CNDO in spectroscopy. XV. Two-photon absorption. J. Chem. Phys. 72, 4149–4203 (1980)

    Google Scholar 

  68. Marder, S.R., Beratan, D.N., Cheng, L.-T.: Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science 252, 103–106 (1991)

    ADS  CAS  Google Scholar 

  69. Marder, S.R., Cheng, L.-T., Tiemann, B.G., Friedli, A.C., Blanchard-Desce, M., Perry, J.W., Skindhøj, J.: Large first hyperpolarizability in push-pull polyenes by tuning of the bond length alternation and aromaticity. Science 263, 511–514 (1994)

    ADS  CAS  Google Scholar 

  70. Marder, S.R., Gorman, C.B., Meyers, F., Perry, J.W., Bourhill, G., Brédas, J.-L., Pierce, B.M.: A unified description of linear and nonlinear polarization in organic polymethine dyes. Science 265, 632–635 (1994)

    ADS  CAS  Google Scholar 

  71. Marder, S.R., Gorman, C.B., Tiemann, B.G., Cheng, L.-T.: Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyenes. J. Am. Chem. Soc. 115, 3006–3007 (1993)

    CAS  Google Scholar 

  72. Marder, S.R., Perry, J.W., Bourhill, G., Gorman, C.B., Tiemann, B.G., Mansour, K.: Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules. Science 261, 186–189 (1993)

    ADS  CAS  Google Scholar 

  73. Marder, S.R., Perry, J.W., Tiemann, B.G., Gorman, C.B., Gilmour, S., Biddle, S.L., Bourhill, G.: Direct observation of reduced bond length alternation in donor/acceptor polyenes. J. Am. Chem. Soc. 115, 2524–2526 (1993)

    CAS  Google Scholar 

  74. Masunov, A., Tretiak, S.: Prediction of two-photon absorption properties for organic chromophores using time-dependent density-functional theory. J. Phys. Chem. B 108, 899–907 (2004)

    CAS  Google Scholar 

  75. McClain, W.M., Harris, R.A.: Two-photon molecular spectroscopy in liquid and gases. In: Excited States, vol. 3. Academc, New York (1977)

    Google Scholar 

  76. McIntyre, E.F., Hameka, H.F.: Calculation of nonlinear electric susceptibilities of aromatic hydrocarbon chains. J. Chem. Phys. 68, 5534–5537 (1978)

    ADS  CAS  Google Scholar 

  77. McIntyre, E.F., Hameka, H.F.: Extended basis set calculations of nonlinear susceptibilities of conjugated hydrocarbons. J. Chem. Phys. 69, 4814–4820 (1978)

    ADS  CAS  Google Scholar 

  78. McIntyre, E.F., Hameka, H.F.: Improved calculation of nonlinear electric susceptibilities of conjugated hydrocarbon chains. J. Chem. Phys. 68, 3481–3484 (1978)

    ADS  CAS  Google Scholar 

  79. Meyers, F., Brédas, J.L., Pierce, B.M., Marder, S.R.: Nonlinear optical properties of donor-acceptor polyenes: Frequency-dependent calculations of the relationship among molecular polarizabilities, α,β, and γ, and bond-length alternation. Nonlinear Optics 14, 61–71 (1995)

    CAS  Google Scholar 

  80. Meyers, F., Marder, S.R., Pierce, B.M., Brédas, J.L.: Electric field modulated nonlinear optical properties of donor-acceptor polyenes: Sum-over-states investigation of the relationship between molecular polarizabilities (α, β and γ) and bond length alternation. J. Am. Chem. Soc. 116, 10703–10714 (1994)

    CAS  Google Scholar 

  81. Monson, P.R., McClain, W.M.: Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphtalene and benzene. J. Chem. Phys. 53, 29–37 (1970)

    CAS  Google Scholar 

  82. Morell, J.A., Albrecht, A.C.: Second-order hyperpolarizability of p-nitroaniline calculated from perturbation theory based expression using CNDO/S generated electronic states. Chem. Phys. Lett. 64, 46–50 (1979)

    ADS  Google Scholar 

  83. Morley, J.O., Pavlides, P., Pugh, D.: On the calculation of the hyperpolarizabilities of organic molecules by the sum over virtual excited states method. Int. J. Quant. Chem. 43, 7–26 (1992)

    CAS  Google Scholar 

  84. Mulliken, R.S.: Molecular compunds and their spectra. II. J. Am. Chem. Soc. 74, 811–824 (1952)

    CAS  Google Scholar 

  85. Musher, J.I.: Hartree-Fock theory of atomic properties. J. Chem. Phys. 46, 369–372 (1967)

    CAS  Google Scholar 

  86. Norman, P., Cronstrand, P., Ericsson, J.: Theoretical study of linear and nonlinear absorption in platinum-organic compounds. Chem. Phys. 285, 207–220 (2002)

    CAS  Google Scholar 

  87. Norman, P., Luo, Y., Ågren, H.: Large two-photon absorption cross sections in two-dimensional, charg-transfer, cumulene-containing aromatic molecules. J. Chem. Phys. 111, 7758–7765 (1999)

    ADS  CAS  Google Scholar 

  88. O’Hare, J.M., Hurst, R.P.: Hyperpolarizabilities of some polar diatomic molecules. J. Chem. Phys. 46, 2356–2366 (1967)

    CAS  Google Scholar 

  89. Olsen, J., Jørgensen, P.: Linear and nonlinear response functions for an exact state and for and MCSCF state. J. Chem. Phys. 82, 3235–3264 (1985)

    ADS  CAS  Google Scholar 

  90. Olsen, J., Jørgensen, P.: Time-dependent response theory with applications to self-consistent field and multiconfigurational self-consistent field wave functions. In: Modern Electronic Structure Theory, vol. 2. World Scientific, Singapore (1995)

    Google Scholar 

  91. Orr, B.J., Ward, J.F.: Perturbation theory of the non-linear optical polarization of an isolated system. Mol. Phys. 20, 513–526 (1971)

    ADS  CAS  Google Scholar 

  92. Otto, P., Gu, F.L., Ladik, J.: Calculation of ab initio dynamic hyperpolarizabilities of polymers. J. Chem. Phys. 110, 2717–2726 (1999)

    ADS  CAS  Google Scholar 

  93. Oudar, J.L.: Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 67, 446–457 (1977)

    ADS  CAS  Google Scholar 

  94. Oudar, J.L., Chemla, D.S.: Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977)

    ADS  CAS  Google Scholar 

  95. Pati, S.K., Marks, T.J., Ratner, M.A.: Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. J. Am. Chem. Soc. 123, 7287–7291 (2001)

    PubMed  CAS  Google Scholar 

  96. Peticolas, W.L., Goldsborough, J.P., Rieckhoff, K.E.: Double photon exctation in organic crystals. Phys. Rev. Lett. 10, 43–45 (1963)

    ADS  CAS  Google Scholar 

  97. Peticolas, W.L., Rieckhoff, K.E.: Double-photon excitation on organic molecules in dilute solution. J. Chem. Phys. 39, 1347–1348 (1963)

    CAS  Google Scholar 

  98. Pierce, B.M.: A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. J. Chem. Phys. 91, 791–811 (1989)

    ADS  CAS  Google Scholar 

  99. Quinet, O., Kirtman, B., Champagne, B.: Analytical time-dependent Hartree-Fock evaluation of the dynamic zero-point vibrationally averaged (ZPVA) first hyperpolarizability. J. Chem. Phys. 118, 505–513 (2003)

    ADS  CAS  Google Scholar 

  100. Sadlej, A.J.: Perturbation theory of the electron correlation effects for atomic and molecular properties. J. Chem. Phys. 75, 320–331 (1981)

    ADS  CAS  Google Scholar 

  101. Sałek, P., Vahtras, O., Guo, J., Luo, Y., Helgaker, T., Ågren, H.: Calculations of two-photon absorption cross sections by means of density-functional theory. Chem. Phys. Lett. 374, 446–452 (2003)

    Google Scholar 

  102. Sałek, P., Vahtras, O., Helgaker, T., Ågren, H.: Density-functional theory of linear and nonlinear time-dependent molecular properties. J. Chem. Phys. 117, 9630–9645 (2002)

    ADS  Google Scholar 

  103. Shuai, Z., Brédas, J.L.: Electronic structure and nonlinear optical properties of fullerenes C60 and C70: A valence-effective-Hamiltonian study. Phys. Rev. B 46, 16135–16141 (1992)

    ADS  Google Scholar 

  104. Sim, F., Chin, S., Dupuis, M., Rice, J.E.: Electron correlation effects in hyperpolarizabilities of p-nitroaniline. J. Phys. Chem. 97, 1158–1163 (1993)

    CAS  Google Scholar 

  105. Tomonari, M., Ookubo, N., Takada, T.: Missing-orbital analysis of molecular hyperpolarizability β calculated by a simplified sum-over-states method. Enhancement of the off-diagonal component βzxx. Chem. Phys. Lett. 215, 45–52 (1993)

    ADS  CAS  Google Scholar 

  106. Tomonari, M., Ookubo, N., Takada, T.: Missing-orbital analysis of molecular hyperpolarizability β calculated by a simplified sum-over-states method: ‘‘multi-state’’ model for βzxx. J. Mol. Struct.: (Theochem) 311, 221–232 (1994)

    Google Scholar 

  107. Tomonari, M., Ookubo, N., Takada, T., Feyereisen, M.W., Almlöf, J.: Simplified sum-over-states calculations and missing-orbital analysis on hyperpolarizabilities of benzene derivatives. Chem. Phys. Lett. 203, 603–610 (1993)

    ADS  CAS  Google Scholar 

  108. Tretiak, S., Chernyak, V.: Resonant nonlinear polarizabilities in the time-dependent density functional theory. J. Chem. Phys. 119, 8809–8823 (2003)

    ADS  CAS  Google Scholar 

  109. Tretiak, S., Mukamel, S.: Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102, 3171–3212 (2002)

    PubMed  CAS  Google Scholar 

  110. Tuan, D.F.-T., Epstein, S.T., Hirschfelder, J.O.: Improvements of uncoupled Hartree-Fock expectations values for physical properties. J. Chem. Phys. 44, 431–433 (1966)

    CAS  Google Scholar 

  111. Velders, G.J.M., Gillet, J.-M., Becker, P.J., Feil, D.: Electron density analysis of nonlinear optical materials. An ab initio study of different conformations of benzene derivatives. J. Phys. Chem. 95, 8601–8606 (1991)

    CAS  Google Scholar 

  112. Wang, C.-K., Macak, P., Luo, Y., Ågren, H.: Effects of π centers and symmetry on two-photon absorption cross sections of organic chromophores. J. Chem. Phys. 114, 9813–9820 (2001)

    ADS  CAS  Google Scholar 

  113. Ward, J.F.: Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory. Rev. Mod. Phys. 37, 1–18 (1965)

    ADS  Google Scholar 

  114. Warshel, A., Weiss, R.M.: An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc. 102, 6218–6226 (1980)

    CAS  Google Scholar 

  115. Willets, A., Rice, J.E., Burland, D.M., Shelton, D.P.: Problems in the comparison of theoretical and experimental hyperpolarizabilities. J. Chem. Phys. 97, 7590–7599 (1992)

    ADS  Google Scholar 

  116. Xie, R.-H.: Empirical exponent law of the second-order hyperpolarizability in small armchair and zig–zag nanotubes. J. Chem. Phys. 108, 3626–3629 (1998)

    ADS  CAS  Google Scholar 

  117. Xie, R.-H., Jiang, J.: Large third-order optical nonlinearities of C60–derived nanotubes in infrared. Chem. Phys. Lett. 280, 66–72 (1997)

    CAS  Google Scholar 

  118. Zaleśny, R., Bartkowiak, W., Leszczynski, J.: Theoretical study of the two-photon absorption in phtochromic fulgides. J. Luminescence 105, 111–116 (2003)

    Google Scholar 

  119. Zaleśny, R., Bartkowiak, W., Styrcz, S., Leszczynski, J.: Solvent effects on conformationally induced enhancement of the two-photon absorption cross section of a pyridinium-N-phenolate betaine dye. A quantum-chemical study. J. Phys. Chem. A 106, 4032–4037 (2002)

    Google Scholar 

  120. Zaleśny, R., Sadlej, A.J., Leszczynski, J.: Size-nonextensive contributions in singles-only CI. Struct. Chem. 15, 379–384 (2004)

    Google Scholar 

  121. Zamani-Khamiri, O., Hameka, H.F.: Polarizability calculations with the SCF method. I. Linear and dynamic polarizabilities of conjugated hydrocarbons and aromatics. J. Chem. Phys. 71, 1607–1610 (1979)

    ADS  CAS  Google Scholar 

  122. Zamani-Khamiri, O., Hameka, H.F.: Polarizability calculations with the SCF method. IV. Various conjugated hydrocarbons. J. Chem. Phys. 73, 5693–5697 (1980)

    ADS  CAS  Google Scholar 

  123. Zamani-Khamiri, O., McIntyre, E.F., Hameka, H.F.: Polarizability calculations with the SCF method. II. The benzene molecule. J. Chem. Phys. 72, 1280–1284 (1980)

    ADS  CAS  Google Scholar 

  124. Zamani-Khamiri, O., McIntyre, E.F., Hameka, H.F.: Polarizability calculations with the SCF method. III. Ethylene, butadiene, and hexatriene. J. Chem. Phys. 72, 5906–5908 (1980)

    ADS  CAS  Google Scholar 

  125. Zhou, X., Ren, A.-M., Feng, J.-K., Liu, X.-J.: A comparative study of the two-photon absorption properties of a new octupolar molecule – truxeone derivative and relative molecules. Chem. Phys. Lett. 373, 167–175 (2003)

    CAS  Google Scholar 

  126. Zhou, X., Ren, A.-M., Feng, J.-K., Liu, X.-J., Zhang, J., Liu, J.: One- and two-photon absorption properties of novel multi-branched molecules. Phys. Chem. Chem. Phys. 4, 4346–4352 (2002)

    CAS  Google Scholar 

  127. Zhou, Y.-F., Wang, X.-M., Zhao, X., Jiang, M.-H.: A quantum-chemical INDO/CI method for calculating two-photon cross sections. J. Phys. Chem. Sol. 62, 1075–1079 (2001)

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bartkowiak, W., Zaleśny, R. (2006). SOS Methods in Calculations of Electronic NLO Properties. In: Papadopoulos, M.G., Sadlej, A.J., Leszczynski, J. (eds) Non-Linear Optical Properties of Matter. Challenges and Advances in Computational Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4850-5_4

Download citation

Publish with us

Policies and ethics