Environmental Risk and Sex Ratio in Newborns

Part of the Environmental Science and Technology Library book series (ENST, volume 23)


Detecting intrauterine exposure to environmental pollutants, based on an increased number of malformations, has only been successful with a few teratogens. Nor does the number of spontaneous abortions represent a more reliable indicator, since a precise record of early abortions is not available. A greater vulnerability to prenatal damage leading to abortion is evident in male embryos/fetuses than in female. The newborn sex ratio (birth rate of boys/girls) is a very stable parameter in healthy populations. Its decrease has been reported after exposure to some harmful environmental factors. We document a decrease in the male birth fraction in the Czech Republic after the Chernobyl disaster in 1986. The absolute numbers of male and female births were determined in each of 600 consecutive months from 1950 to 1999. There were always more newborn boys than girls, except in November 1986, when the number of male births significantly decreased. This deficit in male births might have resulted from the spontaneous abortion of male embryos/fetuses during weeks 8-12 of pregnancy, as a consequence of their increased exposure to radiation, in particular to the radionuclide iodine131. We propose using the newborn sex ratio as a further tool for the standard evaluation of reproductive quality. Combined analyses of the incidence of newborn malformations, spontaneous abortions and stillbirths, intrauterine growth retardation and the newborn sex ratio will help to compensate for the imperfections associated with each of these parameters individually and will provide a more complete understanding of the extent of prenatal risk induced by environmental factors.


Spontaneous Abortion Chernobyl Accident Male Fetus Major Malformation Palatal Shelf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G.R., Kogan, M.D., Himes, J.H., Mor, J.M. and Goldberg, R. (1999) Racial differences in birth weight for gestational age and infant mortality in extremely-low-risk US population, Paediatr. Perinat. Epidemol. 13, 205-217.CrossRefGoogle Scholar
  2. Auvinen, A., Vahteristo, M., Arvela, H., Suomela, M., Rahola, T., Hakama M. and Rytomaa T. (2001) Chernobyl fallout and outcome of pregnancy in Finland, Environ. Health Perspect. 109, 179-185.CrossRefGoogle Scholar
  3. Bangert, K., Blasing, C., Degener, A., Jung, A., Ratzek, R., Schennach, S., Stock, R., Urban, F.J., Reiser, W., Jonas, H., Sattler, E.E., Weingand, G., Huber, K., Barth, B., Kiefer, J.,Elles, S., Optiz von Boberfeld, W. and Handlock, R.M. (1986) Radioactivity in air, rain, soil, plants and food after the Czernobyl incident, Naturwissenschaften 73, 495-498.CrossRefGoogle Scholar
  4. Bernasovsky, I., Bernasovska. K. and Hanzelova, V. (1975) Anthropological Characteristics of Rom new-born children in the Presov district, Proceedings PdF UK, Prague, Biology 4, 35-40.Google Scholar
  5. Bishnoi, A. and Sachmechi, I. (1996) Thyroid disease during pregnancy, Am. Fam. Physician 53, 215-220.Google Scholar
  6. Brent, R.L. (1977) Radiations and other physical agents, chapter 5 in J.G. Wilson, F.C. Fraser (eds.), Handbook of Teratology, Plenum Press, New York and London, UK, pp. 153-223.Google Scholar
  7. Brent, R.L. (2004) Environmental causes of human congenital malformation: The pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors, Pediatrics 113, 957-968.Google Scholar
  8. Brent, R.L. and Beckman, D.A. (1994) The contribution of environmental teratogens to embryonic and fetal loss, Clin. Obstet. Gynecol. 37, 646-670.CrossRefGoogle Scholar
  9. Broadway, J.A., Smith, J.M., Norwood, D.L. and Porter, C.H.R. (1988) Estimates of radiation dose and health risks to the United States population following the Chernobyl nuclear plant accident, Health Phys. 55, 533-539.CrossRefGoogle Scholar
  10. Bulfield, G. and Nahum A. (1978) Effect of the mouse mutants testicular feminization and sex reversal on hormone-mediated induction and repression of enzymes, Biochem. Genet. 16, 743-750.CrossRefGoogle Scholar
  11. Caglar, G.S., Asimakopoulos, B., Nikolettos, N., Diedrich, K. and Al-Hasani, S. (2005) Preimplantation genetic diagnosis for aneuploidy screening in repeated implantation failure, Reprod. Biomed. Online 10, 381-388.CrossRefGoogle Scholar
  12. Campbell, R.B. (2001) John Graunt, John Arbuthnott, and the human sex ratio, Hum. Biol. 73, 605-610.CrossRefGoogle Scholar
  13. Chahnazarian, A. (1988) Determinants of the sex ratio at birth: review of recent literature, Soc. Biol. 35, 214-235.Google Scholar
  14. Davis, D.L., Gottlieb, M.B. and Stampnitzky, J.R. (1998) Reduced ratio of male to female birth in several industrial countries: A sentinel health indicator? JAMA 279, 1018-1023.CrossRefGoogle Scholar
  15. Diewert, V.M. (1983) A morphometric analysis of craniofacial growth and changes in spatial relations during secondary palatal development in human embryos and fetuses, Am. J. Anat. 167, 495-522.CrossRefGoogle Scholar
  16. Eheman, C.R., Garbe, P. and Tuttle, R.M. (2003) Autoimmune thyroid disease associated with environmental thyroidal irradiation, Thyroidology 13, 453-464.CrossRefGoogle Scholar
  17. Ergaz, Z., Avgil, M. and Ornoy, A. (2005) Intrauterine growth restriction-etiology and consequences: What do we know about the human situation and experimental animal models? Reprod. Toxicol. 20, 301-322.CrossRefGoogle Scholar
  18. Ericson, A. and Kallen, B. (1994) Pregnancy outcome in Sweden after the Chernobyl accident, Environ. Res. 67, 149-159.CrossRefGoogle Scholar
  19. Ferguson, M.W.J. (1991) The orofacial region, in Wigglesworth JS, Singer DB (ed), Textbook of Fetal and Perinatal Pathology, Blackwell Scientific Publication, London, UK, pp. 843-880.Google Scholar
  20. Fukuda, M., Fukuda, K., Shimizu, T., Andersen, C.Y. and Byskov, A.G. (2002) Parental periconceptional smoking and male: female ratio of newborn infants, Lancet 359, 1407-1408.CrossRefGoogle Scholar
  21. Gardo, S. (1993) Spontaneous abortion and genetic natural selection, Orv. Hetil. 134, 1459-1464.Google Scholar
  22. Gavyliuk, IuI., Sozans’kyi, O.O., Akopian, G.R., Lozyns’ka, M.R., Siednieva, I.A., Glynka, P.A., Iaborivs’ka, O.M. and Grytsiuk, I.I. (1992) Genetic monitoring in connection with the Chernobyl accident, Tsitol. Genet. 26, 15-29.Google Scholar
  23. Gembicki, M., Sowinski, J., Ruchala, M. and Bednarek, J. (1991) Influence of radioactive contamination and iodine prophylaxis after the Czernobyl disaster on thyroid morphology and function of the Poznan region, Endokrynol. Pol. 42, 273-298.Google Scholar
  24. Grandi, C., Tapia, J.L. and Marshall, G. (2005) An assessment of the severity, proportionality and risk of mortality of very low birth weight infants with fetal growth restriction. A multicenter South American analysis, J. Pediatr. (Rio J). 81, 198 – 204.CrossRefGoogle Scholar
  25. Gregg, N.M. (1941) Congenital cataract following German measles in the mother, Trans. Ophthalmol. Soc. Aust. 3, 35-45.Google Scholar
  26. Grossman, C.M., Morton, W.E. and Nussbaum, R.H. (1996) Hypothyroidism and spontaneous abortion among Hanford, Washington, downwinders, Arch. Environ. Health 51, 175-176.CrossRefGoogle Scholar
  27. Hack, M., Taylor, H.G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., Klein, N., Friedman, H. Mercuri-Minich, N. and Morrow, M. (2005) Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age,Pediatrics 116, 333-341.CrossRefGoogle Scholar
  28. Hassold, T., Quillen, S.D. and Yamane, J.A. (1983) Sex ratio in spontaneous abortion, Ann. Hum. Genet. 47, 39-47.Google Scholar
  29. Heywood, R., Palmer, A.K., Gregson, R.L. and Hummler, H. (1985) The toxicity of beta-carotene, Toxicology 36, 91-100.CrossRefGoogle Scholar
  30. Irgens, L.M., Lie, R.T., Ulstein, M., Skeie Jensen, T., Skjaerven, R., Sivertsen, F., Reitan, J.B., Strand, F., Strand, T. and Egil Skjeldestad, F. (1991) Pregnancy outcome in Norway after Chernobyl, Biomed. Phar. 45, 233-241.CrossRefGoogle Scholar
  31. Jacob, P., Kenigsberg, Y., Goulko, G., Buglova, E., Gering, F., Golovneva, A., Kruk, J. and Demidchik, E.P. (2000) Thyroid cancer risk in Belarus after the Chernobyl accident: Comparison with external exposures, Radiat. Environ. Biophys. 39, 25-31.CrossRefGoogle Scholar
  32. James, W.H. (1996) Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels at the time of conception, J. Theor. Biol. 180, 271-286.CrossRefGoogle Scholar
  33. James, W.H. (2002a) Periconceptual parental smoking and sex ratio of offspring, Lancet 360, 1515.CrossRefGoogle Scholar
  34. James, W.H. (2002b) Parental exposure to dioxin and offspring sex ratios, Environ. Health Perspect.110, A502.CrossRefGoogle Scholar
  35. Jarrell, J.F., Gocmen, A., Akyol, D. and Brant, R. (2002) Hexachlorobenzene exposure and the proportion of male births in Turkey 1935-1990, Reprod. Toxicol. 16, 65-70.CrossRefGoogle Scholar
  36. Jelìnek, R. and Peterka, M. (1977) The role of mandible in mouse palatal development revisited, J. Cleft Palate 14, 211-221.Google Scholar
  37. Jongbloet, P.H., Roeleveld, N. and Groenewoud, H.M. (2002) Where the boys aren’t: dioxin and the sex ratio, Environ. Health Perspect. 110, 1-3.CrossRefGoogle Scholar
  38. Karakashian, A.N., Chusova, V.N., Kryzhanovskaia, M.V., Lepeshkina, T.R., Martynovskaia, T.I.U., Glushchenkom S.S. and Gorbatiukm L.A. (1997) A retrospective analysis of aborted pregnancy in women engaged in agricultural production in controlled areas of Ukraine, Lik Sprava. 4, 40-42.Google Scholar
  39. Khoury, M.J., Erickson, J.D. and James, L.M. (1984) Paternal effects on the human sex ratio at birth: evidence from interracial crosses, Am. J. Hum. Genet. 36, 1103-1111.Google Scholar
  40. Khoury, M.J. and Holtzman, N.A. (1987) On the ability of birth defects monitoring to detect new teratogens, Am. J. Epidemiol. 126, 136-143.Google Scholar
  41. Kimmel, C.A. and Buelka-Sam, J. (1981) Developmental toxicology. Raven Press, N.Y, USA.Google Scholar
  42. Knops, N.B., Sneeuw, K.C., Brand, R., Hille, E.T., den Ouden, L.A., Wit, J.M. and Verloove-Vanhorick, P.S. (2005) Catch-up growth up to ten years of age in children born very preterm or with very low birth weight, BMC. Pediatr. 5, 26.CrossRefGoogle Scholar
  43. Koupilova, I., Vagero, D., Leon, D.A., Pikhart, H., Prikazsky, V., Holcik, J. and Bobak, M. (1998) Social variation in size at birth and preterm delivery in the Czech Republic and Sweden 1989-91, Paediatr. Perinat. Epidemiol. 12, 7-24.CrossRefGoogle Scholar
  44. Krageloh-Mann, I., Toft, P., Lunding, J., Andresen, J., Pryds, O. and Lou, H.C. (1999) Brain lesions in preterms: origin, consequences and compensation, Acta. Paediatr. 88, 897-908.CrossRefGoogle Scholar
  45. Ku era, J. (1989) Population Teratology, Avicenum, Prague, Czech Republic. Kunz, E. (ed) (1986) Report on Radiation Situation in CSSR at Chernobyl Accident, Prague, Czech Republic.Google Scholar
  46. Lazjuk, G.I., Nikolaev, D.L. and Novikova, I.V. (1997) Changes in registered congenital anomalies in the Republic of Belarus after the Chernobyl accident, Stem Cells 15, 255-260.Google Scholar
  47. Leenhouts, H.P., Brugmans, M.J.P. and Chadwick, K.H. (2000) Analysis of thyroid cancer data from the Ukraine after “Chernobyl” using a two-mutation carcinogenesis model, Radiat. Environ. Biophys. 39, 89-98.CrossRefGoogle Scholar
  48. Lenz, W. (1961) Kindliche Missbildungen nach Medikamenteinnahme wahrend der Graviditat? Dtsch. Med. Wochenschr. 86, 2555-2556.Google Scholar
  49. Lenz, W. and Knapp, K. (1962) Die thalidomide-embryopatie, Dtch. Med. Wochenschr. 87, 1232-1242.CrossRefGoogle Scholar
  50. Leridon, H. (1977) Human fertility: The basic components, Chicago University Press, Chicago, USA.Google Scholar
  51. Leridon, H. (1987) Spontaneous fetal mortality. Role of maternal age, parity and previous abortion, J. Gynecol. Obstet. Biol. Reprod. 16, 425-431.Google Scholar
  52. Levy, F., Barr, C. and Sunohara, G. (1998) Directions of aetiologic research on attention deficit hyperactivity disorder,Aust. N.Z.J. Psy. 32, 97-103.CrossRefGoogle Scholar
  53. Linnet, K.M., Dalsgaard, S., Obel, C., Wisborg, K., Henriksen, T.B., Rodriguez, A., Kotimaa, A., Moilanen, I., Thomsen, P.H., Olsen, J. and Jarvelin, M.R. (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence, Am. J. Psych. 160, 1028-1040.CrossRefGoogle Scholar
  54. Lohstroh, P.N., Overstreet, J.W., Stewart, D.R., Nakajima, S.T., Cragun, J.R., Boyers, S.P. and Lasley, B.L. (2005) Secretion and excretion of human chorionic gonadotropin during early pregnancy, Fertil. Steril. 83, 1000-1011.CrossRefGoogle Scholar
  55. Lukacs, G.L., Szakall, S., Kozma, I., Gyory, F. and Balazs, G. (1997) Changes in the epidemiological parameters of radiation-induced illnesses in East Hungary 10 years after Chernobyl, Langenbecks Arch. Chir. Suppl. Kongressbd. 114, 375-377.Google Scholar
  56. Mastroiacovo, P., Spagnolo, A., Marni, E., Meazza, L., Bertollini, R., Segni, G. and Borgna-Pignatti, C. (1988) Birth defects in the Seveso area after TCDD contamination, JAMA 259, 1668-1672.CrossRefGoogle Scholar
  57. McBride, W.G. (1961) Thalidomide and congenital abnormalities, Lancet 2, 1358.CrossRefGoogle Scholar
  58. McMillen, M.M. (1979) Differential mortality by sex in fetal and neonatal deaths, Science 204, 89-91.CrossRefGoogle Scholar
  59. McElreavey, K., Vilain, E., Abbas, N., Herskowitz, I. and Fellous, M. (1993) A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development, PNAS 90, 3368-3372.CrossRefGoogle Scholar
  60. Michnovicz, J.J., Naganuma, H., Hershcopf, R.J., Bradlow, H.L. and Fishman, J. (1988) Increased urinary catechol estrogen excretion in female smokers, Steroids 52, 69-83.CrossRefGoogle Scholar
  61. Miller, J.F., Williamson, E., Glue, J., Gordon, Y.B, Grudzinskas, J.G. and Sykes, A. (1980) Fetal loss after implantation. A prospective study,Lancet 2, 554-556.CrossRefGoogle Scholar
  62. Mizuno, R. (2000) The male/female ratio of fetal deaths and births in Japan, Lancet 356, 738-739.CrossRefGoogle Scholar
  63. Mocarelli, P., Brambilla, P., Gerthoux, P.M., Patterson, D.G. Jr. and Needham, L.L. (1996) Change in sex ratio with exposure to dioxin, Lancet 348, 409.CrossRefGoogle Scholar
  64. Mocarelli, P., Gerthoux, P.M., Ferrari, E., Patterson, D.G. Jr., Kieszak, S.M., Brambilla, P., Vincoli, N., Signorini, S., Tramacere, P., Carreri, V., Sampson, E.J., Turner, W.E. and Needham, L.L. (2000). Paternal concentration of dioxin and sex ratio of offspring, Lancet 355, 1858-1863.CrossRefGoogle Scholar
  65. Moore, K.L. and Persaud, T.V.N. (1993) The developing human. WB Saunders Company, Philadelphia, USA.Google Scholar
  66. Nicolich, M.J., Huebner, W.W. and Schnatter, A.R. (2000) Influence of parental and biological factors on the male birth fraction in the United States: an analysis of birth certificate data from 1964 through 1988, Fertil. Steril. 73, 487-492.CrossRefGoogle Scholar
  67. Nikiforov, Y. and Gnepp, D.R. (1994) Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991-1992) from the Republic of Belarus, Cancer 74, 748-766.CrossRefGoogle Scholar
  68. Nishimura, H., Uwabe, C. and Shiota, K. (1987) Study of human post-implantation conceptus, normal and abnormal, Okajimas. Folia. Anat. Jpn. 63, 337-357.Google Scholar
  69. Odlind, V., Haglund, B., Pakkanen, M. and Otterblad Olausson, P. (2003) Deliveries, mothers and newborn infants in Sweden, 1973-2000. Trends in obstetrics as reported to the Swedish Medical Birth Register, Acta Obstet. Gynecol. Scand. 82, 516-528.CrossRefGoogle Scholar
  70. Ogris, E. (1997) Exposure to radioactive iodine in pregnancy: significance for mother and child, Acte. Med. Austriaca. 24, 150-153.Google Scholar
  71. Peterka, M., Havrànek, T. and Jelìnek, R. (1986) Dose-response relationships in chick embryos exposed to embryotoxic agents, Folia Morphol. 34, 69-77.Google Scholar
  72. Peterka, M., Jelìnek, R. and Pavlìk, A. (1992) Embryotoxicity of 25 psychotropic drugs: A study using CHEST, Reprod. Toxicol. 6, 367-374.CrossRefGoogle Scholar
  73. Peterka, M., Peterkovà, R. and Likovskỳ, Z. (1996) Teratogenic and lethal effects of long-term hyperthermia and hypothermia in the chick embryo, Reprod. Toxicol. 10, 327-332.CrossRefGoogle Scholar
  74. Peterka, M., Peterkovà, R. and Likovskỳ, Z. (1997) Different embryotoxic effect of vitamin A and B-carotene detected in the chick embryo, Acta. Chir. Plast. 39, 91-96.Google Scholar
  75. Peterka, M. and Klepàek, I. (2001) Light irradiation increases embryotoxicity of photodynamic sensitizers (5-aminolevulinic acid and Protoporphyrin IX) in chick embryos, Reprod. Toxicol. 15, 111-116.CrossRefGoogle Scholar
  76. Peterka, M., Peterkovà, R. and Likovskỳ, Z. (2004) Chernobyl: prenatal loss of four hundred male fetuses in the Czech Republic, Reprod. Toxicol. 18, 75-79.CrossRefGoogle Scholar
  77. Poppe, K. and Glinoer, D. (2003) Thyroid autoimmunity and hypothyroidism before and during pregnancy, Hum. Reprod. Update. 9, 149-161.CrossRefGoogle Scholar
  78. Pratt, A.E. (1966) The Pierre Robin syndrome, Brit. J. Radiol. 39, 390-392.CrossRefGoogle Scholar
  79. Racowsky, C. (2002) High rates of embryonic loss, yet high incidence of multiple births in human art: is this paradoxical? Theriogenology 57, 87-96.CrossRefGoogle Scholar
  80. Romanova, L.K, Pokrovskaia, M.S., Mladkovskaia, T.B., Kulikova, G.V., Volkova, E.V., Safronova, L.A., Zhorova, E.S., Beliaev, I.K., Gerasiuto, G.I. and Sivakoba, I.S. (1998) Morphological characteristics of lung in embryos and fetuses in women living in region contaminated with radionuclides after at the Chernobyl power plant, Arkh. Patol. 60, 32-36.Google Scholar
  81. Rosa, F.W. (1983) Teratogenicity of isotretinoin, Lancet 2, 513.CrossRefGoogle Scholar
  82. Ryan, J.J., Amirova, Z. and Carrier, G. (2002) Sex ratios of children of Russian pesticide producers exposed to dioxin, Environ. Health Perspect. 110, A699-A701.CrossRefGoogle Scholar
  83. Scherb, H., Weigelt, E. and Bruske-Hohlfeld, I. (2000) Regression analysis of time trends in perinatal mortality in Germany 1980-1993, Environ. Health Perspect. 108, 159-165.CrossRefGoogle Scholar
  84. Shiota, K., wabe, C. and Nishimura, H. (1987) High prevalence of defective human embryo at the early postimplantation period, Teratology 35, 309-316.CrossRefGoogle Scholar
  85. Shizuma, K., Iwatani, K., Hasai, H., Nishiyama, F., Kiso, Y., Hoshi, M., Sawada, S., Inoue, H., Suzuki, A., Hoshita, N., Kanamori, H. and Sakamoto, I. (1987) Observation of fallout in Hiroshima caused by the reactor accident at Chernobyl, Int J Radiat Biol. 51, 201-207.Google Scholar
  86. Slìpka, J., Jelìnek, R. and Peterka, M. (1980) Comparative morphogenesis of the secondary palate related to the skull development, Folia Morphol. 28, 207-211.Google Scholar
  87. Sperling, K., Pelz, J., Wegner, R.D., Dorries, A., Gruters, A. and Mikkelsen, M. (1994) Significant increase in trisomy 21 in Berlin nine months after the Chernobyl reactor accident: temporal correlation or causal relation? Br. Med. J. 309, 158-162.Google Scholar
  88. Stenke, L., Axelsson, B., Ekman, M., Larsson, S. and Reizenstein, P. (1987) Radioactive iodine and cesium in travellers to different parts of Europe after Chernobyl accident, Acta Oncol. 26, 207-210.Google Scholar
  89. St Sauver, J.L., Barbaresi, W.J., Katusic, S.K., Colligan, R.C., Weaver, A.L. and Jacobsen, S.J. (2004) Early life risk factors for attention-deficit/hyperactivity disorder: a population-based cohort study, Mayo Clin. Proc. 79, 1124-1131.CrossRefGoogle Scholar
  90. Tatham, L.M., Bove, F.J., Kaye, W.E. and Spengler, R.F. (2002) Population exposure to I-131 releases from Hanford Nuclear Reservation and preterm birth, infant mortality, and fetal death, Int. J. Hyg. Environ. Health 205, 41-48.CrossRefGoogle Scholar
  91. Ulstein, M., Skeie Jensen, T., Irgens, L.M., Lie. and R.T. and Sivertsen, E. (1990) Outcome of pregnancy in one Norwegian county 3 years prior to and 3 years subsequent to the Chernobyl accident, Acta. Obstet. Gynecol. Scand. 69, 277-280.Google Scholar
  92. Vartiainen, T., Kartovaara, L. and Tuomisto, J. (1999) Environmental chemicals and changes in sex ratio: analysis over 250 years in Finland, Environ. Health Perspect. 107, 813-815.CrossRefGoogle Scholar
  93. Vatten, L.J. and Skjaerven, R. (2004) Offspring sex and pregnancy outcome by length of gestation, Early Hum. Dev. 76, 47-54.CrossRefGoogle Scholar
  94. Warkany, J. (1977) History of teratology/chapter 1, in J.G. Wilson, FC. Fraser (eds.), Handbook of Teratology, Plenum Press, New York and London, pp. 3-45.Google Scholar
  95. Wells, J.C. (2000) Natural selection and sex differences in morbidity and mortality in early life, J. Theor. Biol. 202, 65-76.Google Scholar
  96. Wilson, J.G. (1977) Current status of teratology/chapter 2, in J.G. Wilson, FC. Fraser (eds.), Handbook of Teratology, Plenum Press, New York and London, pp. 47-74.Google Scholar
  97. Yamazaki, J.N. and Schull, W.J. (1990) Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989, JAMA 264, 605-609.CrossRefGoogle Scholar
  98. Zoeller, T.R., Dowling, A.L., Herzig, C.T., Iannacone, E.A., Gauger, K.J. and Bansai, R. (2002) Thyroid hormone, brain development, and the environment, Environ. Health Pespect. 110, 350-356.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of TeratologyInstitute of Experimental Medicine Academy of Sciences CRVidenská 1083Czech Republic

Personalised recommendations