Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 137))

Abstract

We describe the phase-field method, a new approach to optimal design originally introduced in Bourdin and Chambolle (2000, 2003). It is based on the penalization of the variation of the properties of the designs, and its variational approximation (in the sense of Г-convergence. It uses a smooth function, the phase-field, to represent all materials involved.

We describe our approach, and detail its application to two problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti, G. (2000) Variational models for phase transitions, an approach via Г-convergence, in G. B. et al. (eds), Calculus of Variations and Partial Differential Equations, Springer-Verlag, pp. 95–114 (also available at http://cvgmt.sns.it/papers/).

    Google Scholar 

  • Allaire, G. (2002) Shape Optimization by the Homogenization Method, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Allaire, G. and Kohn, R. (1993a) Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions, Quart. Appl. Math., 51(4), 675–699.

    MATH  MathSciNet  Google Scholar 

  • Allaire, G. and Kohn, R. (1993b) Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quart. Appl. Math., 51(4), 643–674.

    MATH  MathSciNet  Google Scholar 

  • Allaire, G. and Kohn, R. (1994) Optimal lower bounds on the elastic energy of a composite made from two non-well-ordered isotropic materials, Quart. Appl. Math., 52(2), 311–333.

    MATH  MathSciNet  Google Scholar 

  • Allaire, G., Bonnetier, É., Francfort, G. and Jouve, F. (1997) Shape optimization by the homogenization method, Numer. Math., 76(1), 27–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosio, L. and Buttazzo, G. (1993) An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, 1(1), 55–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe, M. and Kikuchi, N. (1988) Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71(2), 197–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe, M. and Sigmund, O. (2002) Topology Optimization, Springer, Berlin.

    MATH  Google Scholar 

  • Bourdin, B. (2001) Filters in topology optimization, Int. J. Numer. Meth. Engrg, 50, 2143–2158.

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin, B. and Chambolle, A. (2000) Optimisation topologique de structures soumises à des forces de pression. Actes du 32ème Congrès National d’Analyse Numérique, SMAI (ed.).

    Google Scholar 

  • Bourdin, B. and Chambolle, A. (2003) Design-dependent loads in topology optimization ESAIM: Control, Optimisation and Calculus of Variations, 9, 19–48.

    MATH  MathSciNet  Google Scholar 

  • Bourdin, B., Francfort, G.A. and Marigo, J.-J. (2000) Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48(4), 797–826.

    Article  MATH  MathSciNet  Google Scholar 

  • Braides, A. (2002) Г-Convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, Vol. 22, Oxford University Press, Oxford.

    Google Scholar 

  • Burger, M. and Stainko, R. (2005) Phase-field relaxation of topology optimization with local stress constraints, to appear.

    Google Scholar 

  • Chambolle, A. (1999) Finite differences discretizations of the Mumford-Shah functional, M2AN Math. Model. Numer. Anal., 33(2), 261–288.

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle, A. and Larsen, C. (2003) C regularity of the free boundary problem for a twodimensional optimal compliance problem, Calc. Var. Partial Differential Equations, 18(1), 77–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Cherkaev, A. (2000) Variational Methods for Structural Optimization, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Cherkaev, A. and Kohn, R. (eds) (1997) Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, Boston, MA.

    MATH  Google Scholar 

  • Dal Maso, G., (1993) An Introduction to Г-Convergence, Birkhäuser.

    Google Scholar 

  • Diaz, A. and Sigmund, O. (1995) Cherckerboard patterns in layout optimization, Struct. Optim., 10, 40–45.

    Article  Google Scholar 

  • Evans, L. and Gariepy, R. (1992) Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  • Federer, H. (1969) Geometric Measure Theory, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Haber, R.B., Jog C.S. and Bendsøe, M.P. (1996) A new approach to variable-topology shape design using a constraint on the perimeter, Struct. Optim., 11, 1–12.

    Article  Google Scholar 

  • Kohn, R. and Strang, G. (1986) Optimal design and relaxation of variational problems: I–III, Comm. Pure Appl. Math., 39(3), 113–137, 139–182, 353–377.

    MATH  MathSciNet  Google Scholar 

  • Modica, L. and Mortola, S. (1977a) Il limite nella Г-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5), 14(3), 526–529.

    MATH  MathSciNet  Google Scholar 

  • Modica, L. and Mortola, S. (1977b) Un esempio di Г-convergenza, Boll. Un. Mat. Ital. B (5), 14(1), 285–299.

    MATH  MathSciNet  Google Scholar 

  • Petersson, J. Beckers M., and Duysinx, P. (1999) Almost isotropic perimeters in topology optimization: Theoretical and numerical aspects, in Proceedings of the Third World Congress on Structural and Multidisciplinary Optimization, Amherst, NY.

    Google Scholar 

  • Sigmund, O. and Petersson, J. (1998) Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Opt., 16(1), 68–75.

    Article  Google Scholar 

  • Wang, M.Y. and Zhou, S.W. (2004) Phase transition: A variational method for structural topology optimization, CMES: Computer Modeling in Engineering & Sciences, 6(6), 547–566.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Bourdin, B., Chambolle, A. (2006). The Phase-Field Method in Optimal Design. In: Bendsøe, M.P., Olhoff, N., Sigmund, O. (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Solid Mechanics and Its Applications, vol 137. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4752-5_21

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4752-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4729-9

  • Online ISBN: 978-1-4020-4752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics