Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 137))

  • 4166 Accesses

Abstract

We first review some recent representation formulas for the boundary voltage perturbation arising as a result of the presence of low volume fraction inhomogeneities, and then discuss the attainability of the limit set of possible polarization tensors by simply connected domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alessandrini, Examples of instability in inverse boundary value problems, Inverse Problems, 13, 887–897 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Ammari, Y. Capdeboscq, H. Kang, E. Kim and M. Lim, Attainability by simply connected domains of optimal bounds for the polarization tensor, European J. Appl. Math., to appear (2006).

    Google Scholar 

  3. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Vol. 1846, Springer (2004).

    Google Scholar 

  4. H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67(2), 97–129 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Ammari and J.K. Seo, An accurate formula for the reconstruction of conductivity inhomogeneities, Adv. in Appl. Math., 30, 679–705 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. A.Y. Belyaev and S.M. Kozlov, Hierarchical structures and estimates for homogenized coefficients. Russian J. Math. Phys., 1(1), 5–18 (1993).

    MathSciNet  MATH  Google Scholar 

  7. E. Beretta, A. Mukherjee and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area, Z. Angew. Math. Phys., 52, 543–572 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Beretta, E. Francini and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. (9), 82(10), 1277–1301 (2003).

    MathSciNet  MATH  Google Scholar 

  9. M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math., 93(4), 635–654 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, M2AN Math. Model. Numer. Anal., 37(1), 159–173 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, M2AN Math. Model. Numer. Anal., 37(2), 227–240 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Capdeboscq and M.S. Vogelius, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction, in Partial Differential Equations and Inverse Problems, Contemp. Math., Vol. 362, pp. 69–87, Amer. Math. Soc., Providence, RI (2004).

    MathSciNet  Google Scholar 

  13. D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. continuous dependence and computational reconstruction, Inverse Problems, 14, 553–595 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: A theorem on continuous dependence, Arch. Rat. Mech. Anal., 105, 299–326 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  15. R.V. Kohn and G.W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media (Minneapolis, MN, 1984/1985), IMA Vol. Math. Appl., Vol. 1, pp. 97–125, Springer, New York (1986).

    Google Scholar 

  16. V. Kozlov, V. Maz’ya and A. Movchan, Asymptotic Analysis of Fields in Multi-Structures, Oxford Mathematical Monographs, Oxford University Press (1999).

    Google Scholar 

  17. R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites, J. Mech. Phys. Solids, 41(5), 809–833 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh Sect. A, 99(1–2), 71–87 (1984).

    MathSciNet  MATH  Google Scholar 

  19. V. Maz’ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, of Operator Theory: Advances and Applications, Vols (I) 111, (II) 112, Birkhäuser Verlag, Basel (2000) [translated from German, first published in 1991].

    Google Scholar 

  20. G.W. Milton, The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press (2002).

    Google Scholar 

  21. A.B. Movchan, Integral characteristics of elastic inclusions and cavities in the two-dimensional theory of elasticity, European J. Appl. Math., 3(1), 21–30 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. A.B. Movchan and S.K. Serkov, The Pólya and Szegö matrices in asymptotic models of dilute composites, European J. Appl. Math., 8(6), 595–621 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de l’Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et Recherches EDF, pp. 319–369, Eyrolles (1985).

    Google Scholar 

  24. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, NJ (1951).

    Google Scholar 

  25. M. Schiffer and G. Szegö, Virtual mass and polarization, Trans. Amer. Math. Soc., 67, 130–205 (1949).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Capdeboscq, Y. (2006). Impedance Imaging for Inhomogeneities of Low Volume Fraction. In: Bendsøe, M.P., Olhoff, N., Sigmund, O. (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Solid Mechanics and Its Applications, vol 137. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4752-5_20

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4752-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4729-9

  • Online ISBN: 978-1-4020-4752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics