Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 137))

Abstract

We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline a convergent nonlinear branch and bound method and present a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtziger, W., Bendsøe, M.P., Ben-Tal, A. and Zowe, J. (1992) Equivalent displacement based formulations for maximum strength truss topology design, Impact of Computing in Science and Engineering, 4, 315–345.

    Article  MATH  MathSciNet  Google Scholar 

  • Bathe, K.-J. (1982) Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Ben-Tal, A. and Bendsøe, M.P. (1993) A new method for optimal truss topology design, SIAM Journal on Optimization, 3(2), 322–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal, A. and Nemirovski, A. (1994) Potential reduction polynomial time method for truss topology design. SIAM Journal on Optimization, 4(3), 596–612.

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal, A. and Nemirovski, A. (1997) Robust truss topology design via semidefinite programming, SIAM Journal on Optimization, 7(4), 991–1016.

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal, A., Jarre, F., Kočvara, M., Nemirovski, A. and Zowe, J. (2000) Optimal design of trusses under a nonconvex global buckling constraint, Optimization and Engineering, 1, 189–213.

    Article  MATH  MathSciNet  Google Scholar 

  • Bollapragada, S., Ghattas, O. and Hooker, J.N. (2001) Optimal design of truss structures by logical-based branch and cut. Operations Research, 49(1), 42–51.

    Article  MathSciNet  Google Scholar 

  • Gill, P.E., Murray, W. and Saunders, M.A. (2002) SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Journal on Optimization, 12(4), 979–1006.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, I., Voudouris, V.T. and Ghattas, O. (1992) Mixed-integer linear programming formulations of some nonlinear discrete design optimization problems, in Recent Advances in Global Optimization, C.A. Floudas and P.M. Pardalos (eds), Princeton University Press.

    Google Scholar 

  • Horst, R. and Tuy, H. (1993) Global Optimization: Deterministic Approaches, Springer-Verlag.

    Google Scholar 

  • Land, A.H. and Doig, A.G. (1960) An automatic method for solving discrete programming problems, Econometrica, 28, 497–520.

    Article  MATH  MathSciNet  Google Scholar 

  • Nemhauser, G. and Wolsey, L. (1999) Integer and Combinatorial Optimization, Wiley.

    Google Scholar 

  • Stolpe, M. (2004) On the reformulation of topology optimization problems as linear or convex quadratic mixed 0–1 problems, Technical Report, Department of Mathematics, Technical University of Denmark (DTU). MAT-Report No. 2004-13. Submitted.

    Google Scholar 

  • Stolpe, M. and Kawamoto, A. (2005) Design of planar articluated mechanisms using branch and bound. Mathematical Programming, Series B, 103, 357–397.

    Article  MATH  MathSciNet  Google Scholar 

  • Stolpe, M. and Svanberg, K. (2003) Modeling topology optimization problems as linear mixed 0–1 programs, International Journal for Numerical Methods in Engineering, 57(5), 723–739.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Stolpe, M., Achtziger, W., Kawamoto, A. (2006). A Concept for Global Optimization of Topology Design Problems. In: Bendsøe, M.P., Olhoff, N., Sigmund, O. (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Solid Mechanics and Its Applications, vol 137. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4752-5_19

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4752-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4729-9

  • Online ISBN: 978-1-4020-4752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics