Skip to main content

Synthetic Iron Chelates to Correct Iron Deficiency in Plants

  • Chapter
Iron Nutrition in Plants and Rhizospheric Microorganisms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboulroos, S. A., El Beissary, E. A. and El Falaky, A. A. (1983) Reactions of the iron chelates and the sodium salts of EDTA, DTPA and EDDHA with two alkaline soils, and their effectiveness during growth of barley, Agron. Ecosyst. 8, 203-214.

    Article  CAS  Google Scholar 

  • Alcántara, E., de la Guardia, M. D. and Romera, F. J. (1991) Plasmalemma redox activity and H+ extrusion in roots of Fe-deficient cucumber plants, Plant Physiol. 96, 1034-1037.

    Article  PubMed  Google Scholar 

  • Álvarez-Fernández, A., Gárate, A., Juárez, M. and Lucena, J. J. (1996) Tomato acquisition of iron chelates in a calcareous sandy substrate, J. Plant Nutr. 19, 1279-1293.

    Article  Google Scholar 

  • Álvarez-Fernández, A., Gárate, A. and Lucena, J. J. (1997) Interaction of iron chelates with several soil materials and with a soil standard, J. Plant Nutr. 20, 559-572.

    Article  Google Scholar 

  • Álvarez-Fernández, A. (2000) Quality and efficacy of Fe chelates (FeEDDHA, FeEDDHMA, FeEDDHSA and FeEDDCHA) as fertilizers, Ph. D. Thesis, University Autónoma of Madrid (In Spanish).

    Google Scholar 

  • Álvarez-Fernández, A., Cremonini, M. A., Sierra, M. A., Placcuci, G. and Lucena, J. J. (2002a) Nature of impurities in fertilizers containing EDDHMA/Fe3+, EDDHSA/Fe3+, and EDDCHA/Fe3+ chelates, J. Agric. Food Chem. 50, 284-290.

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Fernández, A., Sierra, M. A. and Lucena J. J. (2002b) Reactivity of synthetic Fe chelates with soils and soil components, Plant Soil 241, 129-137.

    Article  Google Scholar 

  • Álvarez-Fernández, A., García-Laviña, P., Fidalgo C., Abadía J. and Abadía A. (2004) Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.), Plant Soil 263, 5-15.

    Article  Google Scholar 

  • Álvarez-Fernández, A., García-Marco S. and Lucena J. J. (2005) Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis, Eur. J. Agron. 22, 119-130.

    Article  CAS  Google Scholar 

  • Barak, P. and Chen, Y. (1987) Determination of Fe-EDDHA in soils and fertilizers by anion exchange chromatography, Soil Sci. Soc. Am. J. 51, 893-896.

    CAS  Google Scholar 

  • Bienfait, H. F. (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake, J. Bioenerg. Biomembr. 17, 73-83.

    Article  CAS  PubMed  Google Scholar 

  • Boxma, R. (1979) Analysis of iron chelates in commercial iron fertilizers by gel chromatography, Pflanzenernaehr. Bodenkd. 142, 824-835.

    Article  Google Scholar 

  • Boxma, R. (1981) Effect of pH on the behaviour of various iron chelates in sphagnum (moss) peat, Commun. Soil Sci. Plant Anal. 12, 755-763.

    Article  CAS  Google Scholar 

  • Cesco, S., Römheld, V., Varanini, Z. and Pinton, R. (2000) Solubilization of iron by water-extractable humic substances, J. Plant Nutr. Soil Sci. 163, 285-290.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1988) Plant can utilize iron from iron N,N'-di (2-hydroxybenzoyl) ethylene diamine-N,N'-diacetic acid, a ferric chelate with 106 greater formation constant than iron EDDHA, J. Plant Nutr. 11, 1033-1050.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1989) Kinetics of ferric chelate reduction by roots of iron-deficient peanut (Arachis hypogea), Acta Bot. Neerl. 38, 155-163.

    CAS  Google Scholar 

  • Chaney, R. L. and Bell, P. F. (1987) The complexity of iron nutrition: lessons for plant soil interaction research, J. Plant Nutr. 10, 963-994.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Brown, J. C. and Tiffin, L. O. (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans, Plant Physiol. 50, 208-213.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H. C., Healy, T. W. and Matijevic, E. (1983) Interactions of metal hydrous oxides with chelating agents. III. Adsorption on spherical colloidal hematite particles, J. Colloid Interface Sci. 92, 469-478.

    Article  CAS  Google Scholar 

  • Chen, Y. (1996) Organic matter reactions involving micronutrients in soils and their effect in plants, In A. Piccolo (ed.), Humic Substances in Terrestrial Ecosystems, Elsevier Science B.V., pp. 507-529.

    Google Scholar 

  • Chen, Y. and Barak, P. (1982) Iron nutrition of plants in calcareous soils, Adv. Agron. 35, 217-240.

    Article  CAS  Google Scholar 

  • Cianzio, S. R. (1995) Strategies for the genetic improvement of Fe efficiency in plants, In J. Abadía (ed.), Iron Nutrition in Soils and Plants, Kluwer Academic Pubs., Dordrecht, The Netheerlands, pp. 119-126.

    Google Scholar 

  • Cremonini, M. A., Álvarez-Fernández A., Lucena, J. J., Rombolà, A., Marangoni, B. and Placucci, G. (2001) NMR Analysis of the iron ligand ethylenediaminedi(o-hydroxyphenyl)acetic acid (EDDHA) employed in fertilizers J. Agric. Food Chem. 49, 3527-3532.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, M., Smyth, M. R. and Tuinstra, L. G. M. (1994) Chromatographic separations of metal chelates present in commercial fertilizers. II. Development of an ion-pair chromatographic separation for the simultaneous determination of the Fe(III) chelates of EDTA, DTPA, HEEDTA, EDDHA and EDDHMA and the Cu(II), Zn(II) and Mn(II) chelates of EDTA, J. Chromatogr. A 659, 349-357.

    Article  CAS  Google Scholar 

  • Dexter, M. (1958) Preparation of phenolic ethylenediainepolycarboxylic acids. U.S.A. Patent N. 2,824,128.

    Google Scholar 

  • Fernández-Escobar, R., Barranco, D. and Benlloch, M. (1993) Overcoming iron chlorosis in olive and peach trees using a low-pressure trunk-injection method, HortScience 28, 192-194.

    Google Scholar 

  • Fox, T. C., Shaff, J. E., Grusak, M. A., Norvell, W. A., Chen, Y., Chaney, R. L. and Kochian, L. V. (1996) Direct measurement of 59Fe-labeled Fe2+ influx in roots of pea using a chelator buffer system to control free Fe2+ in solution, Plant Physiol. 111, 93-100.

    CAS  PubMed  Google Scholar 

  • García-Marco, S., Martínez, M. D., Yunta, F., Hernández-Apaolaza, L. and Lucena, J. J. (2005) Effectiveness of ethylenediamine-N-(o-hydroxyphenylacetic)-N’( p-hydroxyphenyl-acetic) acid (o,p-EDDHA) to supply iron to plants, Plant Soil, in press.

    Google Scholar 

  • García-Mina, J. M., Cantera, R. G. and Zamarreño, A. (2003) Interaction of different iron chelates with an alkaline and calcareous soil: A complementary methodology to evaluate the performance of iron compounds in the correction of iron chlorosis, J. Plant Nutr. 26, 1943-1954.

    Article  CAS  Google Scholar 

  • Gómez-Gallego, M., Sierra, M. A., Alcázar, R., Ramírez, P., Piñar, C., Mancheño, M. J., García-Marco, S., Yunta, F. and Lucena, J. J. (2002) Synthesis of o,p-EDDHA and its detection as the main impurity in o,o-EDDHA commercial iron chelates, J. Agric. Food Chem. 50, 6395-6399.

    Article  PubMed  CAS  Google Scholar 

  • Harter, R. D. (1991) Micronutrients adsorption-desorption reactions in soils, In J. J. Mortvedt, F. R. Cox, L. M. Shuman and R. M. Welch (eds.), Micronutrients in Agriculture, 2nd ed., SSSA Book Series No. 4, Soil Science Society of America, Madison, WI, USA, pp. 59-87.

    Google Scholar 

  • Hemwall, J. B. (1958) Reactions of ferric ethylenediamine tetracetate with soil clay minerals, Soil Sci. 86,126-132.

    Article  CAS  Google Scholar 

  • Hernández-Apaolaza, L. and Lucena J. J. (2001) Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite and peat, J. Agric. Food Chem. 49, 5258-5264.

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Apaolaza, L., Álvarez-Fernández, A. and Lucena, J. J., (2000) Chromatographic determination of comercial Fe(III)-chelates, J. Plant Nutr. 23, 2035-2045.

    Article  Google Scholar 

  • Hernández-Apaolaza, L., Barak, P. and Lucena, J. J. (1997) Chromatographic determination of commercial Fe(III) chelates of ethylene diaminetetracetic acid, ethylene diamine-di(o-hydroxyphenylacetic) acid and ethylene diaminedi(o-hydroxy-p-methylphenylacetic) acid, J. Chromatogr. A 789, 453-460.

    Article  Google Scholar 

  • Hernández-Apaolaza, L., Gárate, A. and Lucena, J. J. (1995) Efficacy of commercial Fe(III)-EDDHA and Fe(III)-EDDHMA chelates to supply iron to sunflower and corn seedlings, J. Plant Nutr. 18, 1209-1223.

    Article  Google Scholar 

  • Hill-Cottingham, D. G. (1955) Photosensitivity of iron chelates, Nature 175, 347-348.

    Article  CAS  Google Scholar 

  • Hill-Cottingham, D. G. and Lloyd-Jones, C. P. (1957) Behaviour of iron chelates in calcareous soils. I. Laboratory experiments with Fe-EDTA and Fe-HEEDTA, Plant Soil 8, 263-274.

    Article  CAS  Google Scholar 

  • Kawai, S. and Alam S. (2005) Iron stress response and composition of xylem sap of Strategy II plants, In L. L. Barton and J. Abadía (eds.), Iron Nutrition in Plants and Rizhospheric Microorganisms, Springer, pp. 289-309.

    Google Scholar 

  • Kroll, H., Kell, M, Powers, J. and Simonan J. (1957) A phenolic analog of ethylendiaminetetracetic acid, J. Am. Chem. Soc. 79, 2024-2025.

    Article  CAS  Google Scholar 

  • Kurimura, Y., Ochai, R. and Matsuura, N. (1968) Oxygen oxidation of ferrous ions induced by chelation, Bull. Chem. Soc. Japan 41, 2234-2239.

    Article  CAS  Google Scholar 

  • Lahav, N. and Hochberg, M. (1975) Kinetics of fixation of iron and zinc applied as FeEDTA, FeEDDHA and ZnEDTA in the soil, Soil Sci. Soc. Amer. Proc. 39, 55-58.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1995) Chemical reactions in soils that affect iron availability to plants. A quantitative approach, In J. Abadía (ed.), Iron Nutrition in Soils and Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 7-14.

    Google Scholar 

  • Lindsay, W. L. (1979) Chemical Equilibria in Soils, John Wiley and Sons, New York, USA.

    Google Scholar 

  • Lucena, J. J. (2000) Effect of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review, J. Plant Nutr. 23, 1591-1606.

    Article  CAS  Google Scholar 

  • Lucena, J. J. (2003) Fe chelates for remediation of Fe chlorosis in Strategy I plants, J. Plant Nutr. 26, 1969-1984.

    Article  CAS  Google Scholar 

  • Lucena, J. J. and Chaney, R. (2005a) Synthetic iron chelates as substrates of root ferric chelate reductase (FCR) in green stressed cucumber plants, in press.

    Google Scholar 

  • Lucena, J. J. and Chaney, R. (2005b) Response of cucumber plants to low doses of different synthetic iron chelates in hydroponics, in press.

    Google Scholar 

  • Lucena, J. J., Barak, P. and Hernández-Apaolaza, L. (1996) Isocratic ion pair high performance liquid chromatographic method for the determination of various iron(III) chelates, J. Chromatogr. A. 727, 253-264.

    Article  CAS  Google Scholar 

  • Lucena, J. J., Gárate, A. and Carpena, O. (1988) Theoretical and practical studies on chelate-Ca-pH system in solution, J. Plant Nutr. 11, 1051-1061.

    Article  CAS  Google Scholar 

  • Lucena, J. J., García-Marco, S., Yunta, F. and Hernández-Apaolaza, L. (2005) Theoretical modelization and reactivity of the iron chelates in agronomic conditions, In Biogeochemistry of Chelating Agents, ACS Symposium Series, vol. 910, pp. 348-365.

    Google Scholar 

  • Marschner, H. (1995) Functions of mineral nutrients: micronutrients. Iron, In Mineral Nutrition of Higher Plants, Academic Press Ltd, Cambridge, U. K., pp. 313-324.

    Google Scholar 

  • Mengel, K., Kirkby, E. A., Kosegarten, H. and Appel, T. (2001) Iron, In Principles of Plant Nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 553-571.

    Google Scholar 

  • Moog, P. R. and Brüggemann, W. (1995) Iron reductase systems on the plasma membrane: a review, In J. Abadía (ed.), Iron Nutrition in Soils and Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 343-362.

    Google Scholar 

  • Norvell, W. A. and Lindsay, W. L. (1972) Reactions of DTPA chelates of iron, zinc, copper and manganese with soils. Soil Sci. Soc. Am. Proc. 36, 778-783.

    Article  Google Scholar 

  • Norvell, W. A. (1991) Reactions of metal chelates in soils and nutrient solutions, In J. J. Morvedt, S. R. Cox, L. M. Shuman and R. M. Welch (eds.), Micronutrients in Agriculture, Ed. 2, SSSA Book series no. 4, Soil Science Society of America, Madison, WI, USA, pp. 187-223.

    Google Scholar 

  • Nowack, B. and Sigg, L. (1997) Dissolution of iron(III) (hydr)oxides by metal-EDTA complexes, Geochim. Cosmochim. Acta 61, 951-963.

    Article  CAS  Google Scholar 

  • Nowack, B. and VanBriesen, J. M. (2005) Chelating agents in the environment, In Biogeochemistry of Chelating Agents, ACS Symposium Series vol. 910 pp. 1-21.

    Google Scholar 

  • Pérez-Sanz, A. and Lucena J. J. (1995) Synthetic ion oxides as sources of Fe in a hydroponic culture of sunflower, In J. Abadía (ed.), Iron Nutrition in Soils and Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 241-246.

    Google Scholar 

  • Pestana, M., Varennes A. and Faria, E. A. (2003) Diagnosis and correction of iron chlorosis in fruit trees: A review, J. Food Agric. Environ. 1, 46-51.

    Google Scholar 

  • Petree, H. E., Myatt, J. W. and Jelenefsky, A. M. (1978) Preparation of phenolic ethylenediamine polycarboxylic acids, U.S.A. Patent N. 4,130,582.

    Google Scholar 

  • Pinton, R., Cesco, S., Santi, S., Agnolon, F. and Varanini, Z. (1999) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants, Plant Soil 210,145-157.

    Article  CAS  Google Scholar 

  • Reed, D., Lyons, C. and Eachern, G. Mc. (1988) Field evaluation of inorganic and chelated iron fertilizers as foliar sprays and soil application, J. Plant Nutr. 11, 1369-1378.

    Article  CAS  Google Scholar 

  • Robinson, N. J., Procter, C. M., Connolly, E. L. and Guerinot, M. L. (1999) A ferric-chelate reductase for iron uptake from soils, Nature 397, 695-697.

    Article  Google Scholar 

  • Romera, F. J., Alcántara, E. and de la Guardia, M. D. (1998) The induction of the “turbo reductase” is inhibited by cycloheximide, cordycepin and ethylene inhibitors in Fe-deficient cucumber (Cucumis sativus L.) plants, Protoplasma 205, 156-162.

    Article  CAS  Google Scholar 

  • Römheld, V. and Marshner, H. (1986) Mobilization of iron in the rizosphere of different plant species, Adv. Plant Nutr. 2, 155-204.

    Google Scholar 

  • Rosado, R. del Campillo, M. C., Martínez, M. A., Barrón, V. and Torrent, J. (2002) Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees, Plant Soil 241, 139-144.

    Article  CAS  Google Scholar 

  • Sánchez-Andreu, J., Jordá, J. and Juárez, M. (1991) Reactions of FeEDTA and FeEDDHA applied to calcareous soils, In Y. Chen and Y. Hadar (eds.), Iron Nutrition and Interactions in Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 57-62.

    Google Scholar 

  • Schmidt, W. (2005) Iron stress response in roots of Strategy I plants, In L.L. Barton and J. Abadía (eds.), Iron Nutrition in Plants and Rizhospheric Microorganisms, Springer, pp 229-250.

    Google Scholar 

  • Schwertmann, U. (1991) Solubility and dissolution of iron oxides, Plant Soil, 130, 1-25.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Taylor, R. M. (1989) Iron oxides, In J. B. Dixon and S. B. Weed (eds.), Minerals in soil environments, SSSA Book Series 1, Soil Science Society of America, Madison, WI, USA, pp. 379-438.

    Google Scholar 

  • Sierra, M. A, Gómez-Gallego, M., Alcázar, R., Lucena, J. J., Yunta, F. and García-Marco, S. (2004) Effect of the tether on the Mg(II), Ca(II), Cu(II) and Fe(III) stability constants and pM values of chelating agents related to EDDHA, Dalton Trans. 21, 3741-3747.

    Article  PubMed  Google Scholar 

  • Sierra, M. A., Gómez-Gallego, M., Alcázar-Romero, R., Lucena, J. J., Álvarez-Fernández, A. and Yunta-Mezquita. F. (2002) Novel method for preparing bis(2-hydroxyaryl)amino-acetic acids using cyanide transfer agents. Patent WO 02/00604 A1.

    Google Scholar 

  • Stone, A. T. (1977) Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces, In J. E. Banfield and K. H. Nealson (eds.), Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Mineralogical Society of America, USA, pp. 309-343.

    Google Scholar 

  • Susín, S., Abadía, A., González-Reyes, J. A., Lucena, J. J. and Abadía, J. (1996) The pH requirement for in vivo activity of the iron-deficiency-induced “Turbo” ferric chelate reductase, Plant Physiol. 110, 111-123.

    PubMed  Google Scholar 

  • Tagliavini, M., Abadía, J., Rombolà, A. D., Abadía, A., Tsipouridis, C. and Marangoni, B. (2000) Agronomic means of the control of iron deficiency chlorosis in deciduous fruit trees, J. Plant Nutr. 23, 2007-2022.

    Article  CAS  Google Scholar 

  • Tagliavini, M. and Rombolà, A. D. (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems, Eur. J. Agron. 15, 71-92.

    Article  CAS  Google Scholar 

  • Vlek, P. L. G. and Lindsay, W. L. (1978) Potential use of finely disintegrated iron pyrite in sodic and iron deficient soils, J. Environ. Qual. 7, 111-114.

    CAS  Google Scholar 

  • Wallace, A. and Lunt, O. R. (1956) Reactions of some iron, zinc, and manganese chelates in various soils, Soil Sci. Soc. Am. Proc. 20, 479-482.

    Article  CAS  Google Scholar 

  • Wallace, A., Mueller, R. T., Lunt, O. R., Ashcroft, R. T. and Shannon, L. M. (1955) Comparisons of five chelating agents in soils, in nutrient solutions and in plant responses, Soil Sci. 80, 101-108.

    Article  CAS  Google Scholar 

  • Wei, L. C., Loeppert, R. H. and Ocumpaugh, W. R. (1997) Fe-deficiency stress response in Fe-deficiency resistant and susceptibility subterranean clover: importance of induced H+ release, J. Exp. Bot. 48, 239-246.

    Article  CAS  Google Scholar 

  • Yunta, F., García-Marco, S. and Lucena, J. J. (2003a) Theoretical speciation of ethylenediamine-N(o-hydroxyphenylacetic)-N’(p-hydroxyphenylacetic) acid (o,p-EDDHA) in agronomic conditions, J. Agric. Food Chem. 51, 5391-5399.

    Article  CAS  PubMed  Google Scholar 

  • Yunta, F., García-Marco, S., Lucena, J. J., Gómez-Gallego, M., Alcázar, R. and Sierra, M. A. (2003b) Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+ and Fe3+ chelates, Inorg. Chem. 42, 5412-5421.

    Article  CAS  PubMed  Google Scholar 

  • Yunta, F., Sierra, M. A., Gómez-Gallego, M., Alcázar, R., García-Marco, S. and Lucena, J. J. (2003c) Methodology to screen new iron chelates. Prediction of their behaviour in nutrient solution and soil conditions, J. Plant Nutr. 26, 1995-1968.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lucena, J.J. (2006). Synthetic Iron Chelates to Correct Iron Deficiency in Plants. In: Barton, L.L., Abadia, J. (eds) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_5

Download citation

Publish with us

Policies and ethics