Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadía, A., Sanz, M., de las Rivas, J. and Abadía, J. (1988) Pear yellowness; an atypical form of iron chlorosis? Acta Hortic. 256, 111-182.

    Google Scholar 

  • Abadía, J., Álvarez-Fernández, A., Morales, F., Sanz, M. and Abadía, A. (2002a) Correction of iron chlorosis by foliar sprays, Acta Hortic. 594, 115-121.

    Google Scholar 

  • Abadía, J., López-Millán, A. F., Rombolà, A. D. and Abadía, A. (2002b) Organic acids and Fe deficiency: a review, Plant Soil 241, 75-86.

    Google Scholar 

  • Abadía, J., Álvarez-Fernández, A., Rombolà, A. D., Sanz, M., Tagliavini, M. and Abadía, A. (2004) Technologies for the diagnosis and remediation of Fe deficiency, Soil Sci. Plant Nutr. 50, 965-971.

    Google Scholar 

  • Alcántara, E., Cordeiro, A. M. and Barranco, D. (2003) Selection of olive varieties for tolerance to iron chlorosis, J. Plant Physiol. 160, 1467-1472.

    PubMed  Google Scholar 

  • Álvarez-Fernández, A. 2000. Calidad y eficacia de quelatos férricos(FeEDDHA, FeEDDHMA, FeEDDHSA y FeEDDCHA) como fertilizantes, Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain.

    Google Scholar 

  • Álvarez-Fernández, A., Grasa, R., Abadía, A., Sanz M. and Abadía, J. (2003a) Evaluación agronómica de nuevos quelatos de hierro, Phytoma España 146, 30-36.

    Google Scholar 

  • Álvarez-Fernández, A., Grasa, R., Abadía, A., Sanz, M. and Abadía, J. (2003b) Effects of Fe-deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch), J. Agric. Food Chem. 51, 5738-5744.

    Google Scholar 

  • Álvarez-Fernández, A., García-Laviña, P., Fidalgo, C., Abadía, J. and Abadía, A. (2004a) Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees, Plant Soil 263,5-15.

    Google Scholar 

  • Álvarez-Fernández, A., García-Marco, S. and Lucena, J. J. (2005) Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis, Eur. J. Agron. 22, 119-130.

    Google Scholar 

  • Aly, S. S. M. and Soliman, S. M. (1998) Impact of some organic acids on correcting iron chlorosis in two soybean genotypes grown in calcareous soil, Nutr. Cycl. Agroecosyst. 51, 185-191.

    CAS  Google Scholar 

  • Ao, T. Y., Fan, F., Korcak, R. and Faust, M. (1985) Iron reduction by apple roots, J. Plant Nutr. 8, 629-644.

    CAS  Google Scholar 

  • Aso, P. J. and Dantur, N. C. (1972) La deficiencia de hierro de los Citrus en Tucumán, Revista Industrial y Agrícola de Tucumán 49, 9-16

    CAS  Google Scholar 

  • Baldi, E., Rombolà, A. D., Cesco, S., Tagliavini, M. and Pinton, R. (2004) Utilizzo di ferro complessato da molecole umiche in viti ferro carenti, In Proceedings VII Giornate Scientifiche SOI, Naples, May 2-6, 2004.

    Google Scholar 

  • Bañuls, J., Quiñones, A., Martín, B., Primo-Millo, E. and Legaz, F. (2003) Effects of the frequency of iron chelate supply by fertigation on iron chlorosis in Citrus, J. Plant Nutr. 26, 1985-1996.

    Google Scholar 

  • Barbieri, R., Becchi, R. and Pozza, M. (1992) Repertorio dei fitofarmaci più in uso in fruttiviticoltura, Consorzio Fitosanitario di Modena, Modena, Italia.

    Google Scholar 

  • Benítez, M. L., Pedrajas, V. M., del Campillo M. C. and Torrent, J. (2002) Iron chlorosis in olive in relation to soil properties, Nutr. Cycl. Agroecosyst. 62, 47-52.

    Google Scholar 

  • Bienfait, H. F., Garcia-Mina, J. and Zamarreño, A. M. (2004) Distribution and secondary events of EDDHA in some vegetal species, Soil Sci. Plant Nutr. 50, 1103-110.

    CAS  Google Scholar 

  • Brown, J. C. and Draper, A. D. (1980) Differential response of blueberry (Vaccinium) progenies to pH and subsequent use of iron, J. Am. Soc. Hortic. Sci. 105, 20-24.

    CAS  Google Scholar 

  • Cesco, S., Römheld, V., Varanini, Z. and Pinton, R. (2000) Solubilization of iron by a water extractable humic sustances fraction, J. Plant Nutr. Soil Sci. 163, 285-290.

    CAS  Google Scholar 

  • Chen, L. M., Dick, W. A., Streeter, J. G. and Hoitinnk, H. A. J. (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat, Plant Soil 200, 139-147.

    CAS  Google Scholar 

  • Chen, L., Dick, W. A. and Streeter, J. G. (2000) Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization, J. Plant Nutr. 23, 2047-2060.

    CAS  Google Scholar 

  • Chen, L. S., Smith, B. R. and Cheng, L. (2004) CO2 assimilation, photosynthetic enzymes, and carbohydrates of “Concord” grape leaves in response to iron supply, J. Amer. Soc. Hortic. Sci. 129, 738-744.

    CAS  Google Scholar 

  • Chen, Y. and Barak, P. (1982) Iron nutrition of plants in calcareous soils, Ann. Agron. 35, 217-240.

    CAS  Google Scholar 

  • Clark, C. J. and Smith, G. S. (1988) Seasonal accumulation of mineral nutrients by kiwifruit. 2. Fruit, New Phytol. 108, 399-409.

    CAS  Google Scholar 

  • Coombe, B. G. and Dry, P. R. (1988) Viticulture (1): 221, Australian Industrial Publishers PTY LTD, Adelaide, Australia.

    Google Scholar 

  • Crowley, D. E., Wang, Y. C., Reid, C. P. P. and Szaniszlo, P. J. (1991) Siderophore-iron uptake mechanisms by microorganisms and plants, Plant Soil 13, 179-198.

    Google Scholar 

  • Crowley, D. E., Römheld, V., Marschner, H. and Szaniszlo, P. J. (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores, Plant Soil 142, 1-7.

    CAS  Google Scholar 

  • Crowley, D. E. (2001) Function of siderophores in the plant rhizosphere, In P. Pinton, Z. Varanini, and P. Nannipieri (eds.), The Rhizosphere. Biochemistry and Organic Substances at the Soil-Plant Interface, Marcel Dekker Inc., New York-Basel, USA, pp. 223-261.

    Google Scholar 

  • De Nisi, P. and Zocchi, G. (2000) Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization, J. Exp. Bot. 51, 1903-1909.

    CAS  PubMed  Google Scholar 

  • Drouineau, G. (1942) Dosage rapide du calcaire actif des sols, Ann. Agron. 12, 441.

    CAS  Google Scholar 

  • Elkins, R. B., Meyer, R. D. and Adams, C. D. (2002) Use of urea-sulfuric acid and iron chelate to mitigate iron chlorosis in pear, Acta Hortic. 596, 671-676.

    CAS  Google Scholar 

  • Expert, D. (1999) Withholding and exchanging iron: interactions between Erwinia spp. and their plant hosts, Ann. Rev. Phytopathol. 37, 307-334.

    CAS  Google Scholar 

  • Fernández-Escobar, R., Barranco, D. and Benlloch, M. (1993) Overcoming iron chlorosis in olive and peach trees using a low-pressure trunk-injection method, HortScience 28, 192-194.

    Google Scholar 

  • Fichera, P. (1968) La clorosi ferrica da calcare nei terreni agrumetati della Sicilia Orientale. II. Aspetti nutrizionali, Agrochimica XII, 522-530.

    Google Scholar 

  • Fox, T. C. and Guerinot, M. L. (1998) Molecular biology of cation transport in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 669-696.

    CAS  PubMed  Google Scholar 

  • Gärtel, W. (1993) Grapes, In Bennett J. (ed.), Nutrient deficiencies and toxicity, ASP Press, St. Paul, Minnesota, USA, pp. 177-183.

    Google Scholar 

  • Geraci, G. (1994) Attuali conoscenze sui principali portinnesti degli agrumi, Frutticoltura 7-8, 7-16.

    Google Scholar 

  • Gogorcena, Y., Abadía, J. and Abadía, A. (2000) Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock, J. Plant Nutr. 23, 9-21.

    CAS  Google Scholar 

  • Gogorcena, Y., Abadía, J. and Abadía, A. (2004) A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations, J. Plant Nutr. 27, 1701-1715.

    CAS  Google Scholar 

  • Grcman, H., Velikoja-Bolta, S., Vodnik, D., Kos B. and Lestan, D. (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity, Plant Soil 235, 105-114.

    CAS  Google Scholar 

  • Han, Z. H., Shen, T., Korcak, R. F. and Baligar, V. C. (1994) Screening for iron-efficienct species in the genus Malus, J. Plant Nutr. 17, 579-592.

    CAS  Google Scholar 

  • Han, Z. H., Shen, T., Korcak, R. F. and Baligar, V. C. (1998) Iron absorption by iron-efficient and -inefficient species of apples, J. Plant Nutr. 21, 181-190.

    CAS  Google Scholar 

  • Hauter, R. and Mengel, K. (1988) Measurement of pH at the root surface of red clover (Trifolium pratense) grown in soils differing in proton buffer capacity, Biol. Fert. Soils 5, 295-298.

    CAS  Google Scholar 

  • Horesh, I., Levy, Y. and Goldschmidt, E. E. (1986) Prevention of lime-induced chlorosis in Citrus trees by peat and iron treatments to small soil volumes, HortScience 21, 1363-1364.

    CAS  Google Scholar 

  • Iglesias, I., Dalmau, R. and Marcé, X. (2000) Fertilization with iron(II)-phosphate effectively prevents iron chlorosis in pear trees (Pyrus communis L.), Acta Hortic. 531, 65-72.

    Google Scholar 

  • Inskeep, W. P. and Bloom, P. R. (1986) Calcium carbonate supersaturation in soil solutions of Calciaquolls, Soil Sci. Soc. Am. J. 50, 1431.

    CAS  Google Scholar 

  • Jaeger, B., Golbach, H. and Sommer, K. (2000) Release from lime induced iron chlorosis by Cultan in fruit trees and its characterisation by analysis, Acta Hortic. 531, 107-113.

    Google Scholar 

  • Kalbasi, M., Manucheri, N. and Filsoot, F. (1986). Local acidification of soil as a means to alleviate iron chlorosis in quince orchards, J. Plant Nutr. 9, 1001-1007.

    CAS  Google Scholar 

  • Kalbasi, M. and Shariatmadari, H. (1993) Blood powder, a source of iron for plants, J. Plant Nutr. 16, 2213-2223.

    CAS  Google Scholar 

  • Kamal, K., Haggag, L. and Awad F. (2000) Improved Fe and Zn acquisition by guava seedlings growing calcareous soils intercropped with graminaceous species, J. Plant Nutr. 23,2071-2080.

    CAS  Google Scholar 

  • Kannan, S. (1988) Occurrence of iron deficiency in important crops in Maharashtra and Tamil Nadu States in India: a report, J. Plant Nutr. 11, 1285-1293.

    CAS  Google Scholar 

  • Korcak, R. F. (1987) Iron deficiency chlorosis, Hortic. Rev. 9, 133-186.

    CAS  Google Scholar 

  • Kosegarten, H., Grolig, F., Esch, A., Glüsenkamp, K. H. and Mengel, K. (1999) Effects of NH4 +, NO3 - and HCO3 - on apoplast pH in the outer cortex of root zones of maize as measured by fluorescence ratio of boronic acid, Planta 209, 444-452.

    CAS  PubMed  Google Scholar 

  • Kosegarten, H. and Koyro, H. W. (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mais ) roots grown in calcareous soil, Physiol Plant. 113, 515-522.

    CAS  Google Scholar 

  • Kosegarten, H., Hoffmann, B. and Mengel, K. (2001) The paramount influence of nitrate in increasing apopastic pH of young sunflower leaves to induce Fe deficiency chlorosis, and the re-greening effect brought about by acidic foliar sprays, J. Plant Nutr. Soil Sci. 164, 155-163.

    CAS  Google Scholar 

  • Kosegarten, H., Rombolà, A. D., Sorrenti, G., Tagliavini, M. and Marangoni, B. (2004) Nitrate nutrition inducing Fe deficiency chlorosis in peach (Prunus persica L.), In Abstracts of the XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 130.

    Google Scholar 

  • Larbi, A., Morales, F., Abadía, J. and Abadía, A. (2003) Effect of branch solid Fe implants on Fe xylem transport in peach and pear: changes in organic acid and Fe concentrations and pH, J. Plant Physiol. 160, 1473-1481.

    CAS  PubMed  Google Scholar 

  • Larbi, A., Morales, F., López-Millán, A. F., Gogorcena, Y., Abadía, A., Moog, P. R. and Abadía, J. (2001) Technical advance: reduction of Fe(III)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency, Plant Cell Physiol. 42, 94-105.

    CAS  PubMed  Google Scholar 

  • Ledgard, S. F. and Smith, G. S. (1992) Fate of 15N-labelled nitrogen fertilizer applied to kiwifruit (Actinidia deliciosa) vines. II. Temporal change in 15N within vines, Plant Soil 147,59-68.

    CAS  Google Scholar 

  • Legaz, F., Serna M. D., Primo-Millo E. and Martin B. (1992) Leaf spray and soil application of Fe-chelates to Navelina orange trees. Proc. Int. Soc. Citriculture 2, 613-617.

    Google Scholar 

  • Legaz, F., Serna M. D. and Primo-Millo E. (1995) La deficiencia de hierro en los cítricos, Generalitat Valenciana, Conselleria d’Agricultura, Pesca i Alimentació, Valencia, España.

    Google Scholar 

  • Lindsay, W. L. (1974) Role of chelation in micronutrient availability, In E. W. Carson (ed.), The Plant Root and its Environment, University Press of Virginia, Charlottesville, USA, pp. 507-524.

    Google Scholar 

  • Loeppert, R. H., Wei, L. C. and Ocumpaugh, W. R. (1994) Soil factors influencing the mobilization of iron in calcareous soils, In J. A. Manthey, D. A. Crowley and D. G. Luster (eds.), Biochemistry of Metal Micronutrients in the Rhizosphere, Lewis Publishers, Boca Raton, FL, USA, pp. 343-360.

    Google Scholar 

  • López-Millán, A. F., Morales, F., Abadía A. and Abadía, J. (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees, J. Exp. Bot. 52, 1489-1498.

    PubMed  Google Scholar 

  • López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadía A., de las Rivas, J. and Abadía, J. (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol. 124, 885-897.

    PubMed  Google Scholar 

  • Loupassaki, M. H., Lionakis, S. M. and Androulakis, I. I. (1997) Iron deficiency in kiwi and its correction by different methods, Acta Hortic. 444, 267-271.

    CAS  Google Scholar 

  • Lucena, J. J., Barak, P. and Hernández-Apaolaza, L. (1996) Isocratic ion-pair high-performance liquid chromatographic method for the determination of various iron(III) chelates, J. Chromatogr. 727, 253-264.

    CAS  Google Scholar 

  • Lucena, J. J. (2003) Fe chelates for remediation of Fe chlorosis in Strategy I plants. J. Plant Nutr. 26, 1969-1984.

    CAS  Google Scholar 

  • Ma, J. F. and Nomoto, K. (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores, Physiol. Plant. 97, 609-617.

    CAS  Google Scholar 

  • Ma, J. F., Ueno, H., Ueno, D., Rombolà, A. D, and Iwashita, T. (2003) Characterization of phytosiderophores secretion in Festuca rubra, Plant Soil 256, 131-137.

    CAS  Google Scholar 

  • Manthey, J. A., McCoy, D. L. and Crowley, D. E. (1994) Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in Citrus rootstocks, Plant Physiol. Biochem. 32, 211-215.

    CAS  Google Scholar 

  • Masalha, J., Kosegarten, H., Elmaci, Ö. and Mengel, K. (2000) The central role of microbial activity for iron acquisition in maize and sunflower, Biol. Fert. Soils 30, 433-439.

    CAS  Google Scholar 

  • Matocha, J. E. (1984) Grain sorghum response to plant residue-recycled iron and other iron sources, J. Plant Nutr. 7, 259-270.

    CAS  Google Scholar 

  • Matocha, J. E. and Pennington, D. (1982) Effects of plant iron recycling on iron chlorosis af grain sorghum on calcareous soils, J. Plant Nutr. 5, 869-882.

    CAS  Google Scholar 

  • Mengel, K. (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils, Plant Soil 165, 275-283.

    CAS  Google Scholar 

  • Mínguez-Mosquera, M. I., Rejano-Navarro, L., Gandul-Rojas, B., Sánchez-Gómez, A. H. and Garrido-Fernández, J. (1991) Color pigment correlation in virgin olive oil, J. Am. Oil Chem. Soc. 68, 332-336.

    Google Scholar 

  • Moog, P. R. and Brüggemann, W. (1994) Iron reductase systems on the plant plasma membrane - A review. Plant Soil 165, 241-260.

    CAS  Google Scholar 

  • Moreno, M. A., Tabuenca, M. C. and Cambra, R. (1995) Adesoto 101, a plum roootstock for peaches and other stone fruit, HortScience 30, 1314-1315.

    Google Scholar 

  • Mori, S. (1999) Iron acquisition by plants, Curr. Op. Plant Biol. 2, 250-253.

    CAS  Google Scholar 

  • Nörtemann, B. (1999) Biodegradation of EDTA, Appl. Microbiol. Biotechnol. 51, 751-759.

    PubMed  Google Scholar 

  • Obreza, T. A., Alva, A. K. and Calvert, D. V. (1993) Citrus fertilizer management on calcareous soils, Univ. Florida Coop. Ext. Serv. Circ. 1127.

    Google Scholar 

  • Ojeda, M., Shaffer, B. and Davies, F. S. (2003) Ferric chelate reductase activity in roots of two Annona species as affected by iron nutrition, HortScience 38, 1104-1107.

    CAS  Google Scholar 

  • Ollat, N., Laborde, B., Neveux, M., Diakou-Verdin, P. and Annik, R. C. (2003) Organic acid metabolism in roots of various grapevine (Vitis) rootstocks submitted to iron deficiency and bicarbonate nutrition, J. Plant Nutr. 26, 2165-2176.

    CAS  Google Scholar 

  • Pastor, M., Castro, J. and Hidalgo, J. (2002). La correzione della clorosi ferrica dell’olivo, Olivae 90, 42-45.

    Google Scholar 

  • Patruno, A. and Cavazza, L. (1989) Osservazioni sul calcare attivo Proceedings “Fertilità del Suolo e Nutrizione dellePpiante”, S. Agnello, Sorrento, Italy, May 6-8 1987.

    Google Scholar 

  • Pérez-Sanz, A., Álvarez-Fernández, A., Casero, T., Legaz, F. and Lucena J. J. (2002) Fe enriched biosolids as fertilizers for orange and peach trees grown in field conditions, Plant Soil 241, 145-153.

    Google Scholar 

  • Pestana, M., Correia, P. J., Miguel, M. G., Varennes, A., Abadía, J. and Faria, E. A. (2002) Foliar treatments as a strategy to control iron chlorosis in orange trees, Acta Hortic. 594, 223-228.

    CAS  Google Scholar 

  • Pinton, R., Cesco, S., Santi, S., Agnolon, F. and Varanini, Z. (1999) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants, Plant Soil 210, 145-157.

    CAS  Google Scholar 

  • Pouget, R. (1974) Influence des reserves glucidiques sur l’intensité de la chlorose ferrique chez la vigne, Connaissance de la Vigne et du Vin 8, 305-314.

    Google Scholar 

  • Poonachit, U. and Darnell R. (2004) Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species, Ann. Bot. 93, 399-405.

    Google Scholar 

  • Procopiou, J. and Wallace, A. (2000) A wild pear native to calcareous soils that has a possible application as a pear rootstock, J. Plant Nutr. 23, 1969-1972.

    CAS  Google Scholar 

  • Raymundo, A. K. and Ries, S. M. (1980) Chemotaxis of Erwinia amylovora, Phytopathology 70, 1066-1069.

    CAS  Google Scholar 

  • Reil, W. O., Beutel, J. A., Hemstreet, C. H. and Seyman W. S. (1978) Trunk injection corrects iron and zinc deficiency in pear trees, California Agriculture October, 22-23.

    Google Scholar 

  • Roldán, R. Barrón, V. and Torrent J. (2002) Why is vivianite effective to reduce Fe chlorosis?, In Abstracts: XI International Symposium on Iron Nutrition and Interactions in Plants, Udine, Italy.

    Google Scholar 

  • Rom, R. C. and Carlson, R. F. (1987) Rootstocks for Fruit Crops. John Wiley and Sons, New York.

    Google Scholar 

  • Rombolà, A. D., Brüggemann, W., Tagliavini, M., Marangoni, B. and Moog, P. R. (2000) Iron source affects Fe-reduction and re-greening of kiwifruit (Actinidia deliciosa) leaves. J. Plant Nutr. 23, 1751-1765.

    Google Scholar 

  • Rombolà, A. D., Brüggemann, W., López-Millán, A. F., Tagliavini, M., Abadía, J., Marangoni, B. and Moog, P. R. (2002a) Biochemical response to iron deficiency in kiwifruit (Actinidia deliciosa), Tree Physiol. 22, 869-875.

    PubMed  Google Scholar 

  • Rombolà, A. D., Cremonini, M. A., Lucchi, A., Sorrenti, G., Placucci, G., Marangoni, B. (2002b) Leaching of soil-applied synthetic Fe chelates (Fe-EDDHA) in orchard ecosystem, In Abstracts XI International Symposium on Iron Nutrition and Interaction in Plants, Udine, Italy.

    Google Scholar 

  • Rombolà, A. D., Dallari, S., Quartieri, M., Ammari, T., Scudellari, D., Tagliavini, M. (2002c) Effect of foliar-applied Fe sources, organic acids and sorbitol on the re-greening of kiwifruit leaves affected by lime-induced iron chlorosis, Acta Hortic. 594, 349-355.

    Google Scholar 

  • Rombolà, A. D., Baldi, E., Franceschi, T., Ammari, T., Minguez Paramio, J. and Tagliavini, M. (2003a) Prevenzione della clorosi ferrica dell’actinidia (Actinidia deliciosa) mediante consociazione temporanea con specie graminacee, In Proceedings “Actinidia la Novità Frutticola del XX Secolo”, Verona, Italy, pp. 249-254.

    Google Scholar 

  • Rombolà, A. D., Toselli, M., Carpintero, J., Ammari, T., Quartieri, M., Torrent, J. and Marangoni, B. (2003b) Prevention of iron-deficiency induced chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite in a calcareous soil, J. Plant Nutr. 26, 2031-2041.

    Google Scholar 

  • Rombolà, A. D., Toselli, M., Sorrenti, G., Lucchi, A., Borghini, M. and Marangoni, B. (2003c) Efficacia della vivianite sintetica nella prevenzione della clorosi ferrica del pesco, Frutticoltura 7-8, 49-52.

    Google Scholar 

  • Rombolà, A. D., Baldi, E., Franceschi, A., Ueno, D., Marangoni, B., Ma, J. F. and Tagliavini, M. (2004) Prevention of iron chlorosis in kiwifruit (Actinidia deliciosa) through cultivation in a mixed cropping system with graminaceous species, In Abstracts XII International Symposium on Iron Nutrition and Interaction in Plants, Tokyo, Japan, p. 30.

    Google Scholar 

  • Romera, F. J., Alcántara, E. and de La Guardia, M. D. (1991) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. II. Iron-stress response mechanisms, Plant Soil 130, 121-125.

    CAS  Google Scholar 

  • Rosado, R., del Campillo, M. C., Martínez, M. A., Barrón V. and Torrent, J. (2002) Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees, Plant Soil 241, 139-144.

    CAS  Google Scholar 

  • Rusco, E. and Quaglino, E. (2001) Il sistema informativo sui suoli (SIS) della Regione Puglia e della repubblica d’Albania, Documenti del Territorio Numero Speciale Monografico “Il sistema informativo territoriale della Regione Puglia”, Italia, pp. 7-12.

    Google Scholar 

  • Salazar-García, S. (1999) Iron nutrition and deficiency: a review with emphasis in avocado (Persea americana Mill.), Revista Chapingo Serie Horticultura 5, 67-76.

    Google Scholar 

  • Sanz, M., Cavero, J. and Abadía, J. (1992) Iron chlorosis in the Ebro river basin, Spain, J. Plant Nutr. 15, 1971-1981.

    CAS  Google Scholar 

  • Schwertmann, U. (1966) Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide, Nature 212, 645.

    CAS  Google Scholar 

  • Scudellari, D., Spada, G. and Pelliconi, F. (1998) Speciale actinidia, la fertilizzazione e la gestione del suolo, Suppl. Terra e Vita 23, 29-35.

    Google Scholar 

  • Smith, C. S., Buwalda, J. C. and Clark, C. J. (1988) Nutrient dynamics of a kiwifruit ecosystem. Scientia Hortic. 37, 87-109.

    Google Scholar 

  • Socias i Company, R., Gomez Aparisi, J. and Felipe, A. J. (1995) A genetical approch to iron chlorosis in deciduous fruit trees, In Iron Nutrition in Soil and Plants, J. Abadía (ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 167-174.

    Google Scholar 

  • Sommer, K. (1993) ”Cultan” - Fertilizers and fertilization technique: fundamentals and further development, In Proceedings of Dhalia Greidinger Memorial International Workshop on Controlled Slow Release Fertilizers, Technion-Israel Institute of Technology Haifa, Israel.

    Google Scholar 

  • Susín, S., Abadía, A., González-Reyes, J. A., Lucena, J. J. and Abadía J. (1996) The pH requirement for in vivo activity of the iron-deficiency-induced “turbo” ferric chelate reductase. A comparison of the iron deficiency induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet, Plant Physiol. 110, 111-123.

    PubMed  Google Scholar 

  • Tagliavini, M., Rombolà, A. D. and Marangoni, B. (1995a) Response to iron-deficiency stress of pear and quince genotypes, J. Plant Nutr. 18, 2465-2482.

    CAS  Google Scholar 

  • Tagliavini, M., Scudellari, D., Marangoni, B. and Toselli, M. (1995b) Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis, In J. Abadía (ed.), Iron Nutrition in Soil and Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 191-195.

    Google Scholar 

  • Tagliavini, M., Abadía, J., Rombolà, A. D., Tsipouridis, C. and Marangoni, B. (2000) Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees, J. Plant Nutr. 23, 2007-2022.

    CAS  Google Scholar 

  • Tagliavini, M. and Rombolà, A. D. (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems, Eur. J. Agron. 15, 71-92.

    CAS  Google Scholar 

  • Takagi, S. (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings. I. Activity measurements and preliminary characterization, Soil. Plant. Nutr. 22, 423.

    CAS  Google Scholar 

  • Tekin, H., Arpaci, S., Youkceken, Y. and Cakir, I. (1998) Pistachio nut iron deficiencies on calcareous soils, Acta Hortic. 470, 421-425.

    CAS  Google Scholar 

  • Treeby, M. and Uren N. (1993) Iron deficiency stress responses amongst Citrus rootstocks, Z. Pflanzenernähr. Bodenk. 156, 75-81.

    CAS  Google Scholar 

  • Ueno, D., Rombolà, A. D. and Ma, J. F. (2002) Different secretion patterns of phytosiderophore in three gramineus species, In Abstracts XI International Symposium on Iron Nutrition and Interactions in Plants, Udine, Italy.

    Google Scholar 

  • Ueno, D., Iwashita, T., Nomoto, K., Rombolà, A. D. and Ma, J. F. (2004) Identification of two new phytosiderophores secreted from perennial grasses, In Abstracts XII International Symposium on Iron Nutrition and Interaction in Plants, Tokyo, Japan, p. 102.

    Google Scholar 

  • Varanini, Z. and Pinton, R. (2005) Plant-soil relationship: role of humic substances in iron nutrition, In L.L. Barton and J. Abadía (eds.), Iron Nutrition in Plants and Rizhospheric Microorganisms, Springer, pp. 153-168.

    Google Scholar 

  • Vizzotto, G., Pinton, R., Bomben, C., Cesco, S., Varanini, Z. and Costa, G. (1999) Iron reduction in iron-stressed plants of Actinidia deliciosa genotypes: involvement of PM Fe(III)-chelate reductase and H+-ATPase activity, J. Plant Nutr. 22, 479-488.

    CAS  Google Scholar 

  • Wallace, A. (1991) Rational approches to control of iron deficiency other than plant breeding and choice of resistant cultivars, Plant Soil 130, 281-288.

    CAS  Google Scholar 

  • Wallace, G. A. and Wallace, A. (1986) Correction of iron deficiency in trees by injection with ferric ammonium citrate solutions, J. Plant Nutr. 9, 981-986.

    CAS  Google Scholar 

  • Wallihan, E. F., Garber, M. J. and Sharpless, R. G. (1976) Soil temperature and iron uptake in young Citrus plants, HortScience 9, 200-201.

    Google Scholar 

  • Yehuda, Z., Shenker, M., Hadar, Y. and Chen, Y. (2000) Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin, J. Plant Nutr. 23, 1991-2006.

    CAS  Google Scholar 

  • Yehuda, Z., Hadar, Y. and Chen, Y. (2003) Immobilized EDDHA and DFBO as iron carriers to cucumber plants, J. Plant Nutr. 26, 2043-2056.

    CAS  Google Scholar 

  • Yoshikawa, F. T. (1988) Correcting iron deficiency of peach trees, J. Plant Nutr. 11, 1387-1396.

    Google Scholar 

  • Yoshikawa, F. T., Reil, W. O. and Stromberg, L. K. (1982) Trunk injection corrects iron deficiency in plum trees, California Agriculture March-April, 13.

    Google Scholar 

  • Zuo, Y., Zhang, F., Li, X. and Cao, Y. (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil, Plant Soil 220, 13-25.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Rombolà, A.D., Tagliavini, M. (2006). Iron Nutrition of Fruit Tree Crops. In: Barton, L.L., Abadia, J. (eds) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_3

Download citation

Publish with us

Policies and ethics