Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arumuganathan, K. and Earle, E. D. (1991) Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep. 9, 208–219.

    CAS  Google Scholar 

  • Beachell, H. M., Adair, C. R., Jodon, N. E., Davis, L. L. and Jones, J. W. (1938) Extent of natural crossing in rice, J. Am. Soc. Agron. 30, 743–753.

    Google Scholar 

  • Brendel, V., Kurtz, S. and Wlabot, V. (2002) Comparative genomics of Arabidopsis and maize: prospects and limitations, Genome Biol.3, reviews1004.1–1005.6(www.Genomebiology.com/2002 /3/3/reviews/1005).

  • Briat, J.-F., Fobis-Loisy, I., Grignon, N., Lobreaux, S., Pascal, N., Savino, G., Thoiron, S., von Wirén, N. and Van Wuytsinkel, O. (1995) Cellular and molecular aspects of iron metabolism in plants, Biol. Cell 84, 69–81.

    Article  CAS  Google Scholar 

  • Brown, J. C. and Ambler, J. E. (1970) Further characterization of iron uptake in two genotypes of corn, Soil Sci. Soc. Am. Proc. 34, 249–252.

    Article  CAS  Google Scholar 

  • Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H. and Mori, S. (2002) Cloning an iron regulated metal transporter from rice, J. Exp. Bot. 53, 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  • Cassells, A. C. and Doyle, B. M. (2003) Genetic engineering and mutation breeding for tolerance to abiotic and biotic stresses: science, technology and safety, Bulg. J. Plant Physiol., Special Issue 2003, 52–82.

    Google Scholar 

  • Chaney, R. L. and Bell, P. F. (1987) Complexity of iron nutrition: Lessons for plant-soil interaction research, J. Plant Nutr. 10, 963–994.

    Article  CAS  Google Scholar 

  • Chatterjee, D. (1948) A modified key and enumeration of species of Oryza sativa L., Indian J. Agric. Sci. 18, 185–192.

    Google Scholar 

  • Cianzio, S. R. (1991) Recent advances in breeding for improving iron utilization by plants, In Y. Chen and Y. Hadar (eds.), Iron Nutrition and Interactions in Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 83–88.

    Google Scholar 

  • Cianzio, S. R. (1997) Soybean breeding and improvement, In M. S. Kang (ed.), Crop Improvement for the 21st Century, Research Signpost Publisher, Trivandrum, India, pp. 1–13.

    Google Scholar 

  • Cianzio, S. R. and Fehr, W. R. (1980) Genetic control of iron deficiency chlorosis in soybeans, Iowa State J. Res. 54, 367–375.

    Google Scholar 

  • Cianzio, S. R. and Fehr, W. R. (1982) Variation in the inheritance of resistance to iron deficiency chlorosis in soybeans, Crop Sci. 22, 433–434.

    Google Scholar 

  • Coffman, W. R. and Herrera, R. M. (1980) Rice, In W. R. Fehr and H. H. Hadley (eds.), Hybridization of Crop Plants. 1980, American Society of Agronomy and Crop Science of America Publishers, Madison, Wisconsin, USA, pp. 511–522.

    Google Scholar 

  • Connolly, E. L., Fett, J. P. and Guerinot, M. L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell 14, 1347–1357.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, C. K., Fox, T. C., Garvin, D. F. and Kochian, L. V. (1998) The role of iron-deficiency stress responses in stimulating heavy metal transport in plants, Plant Physiol. 116, 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  • Curie, C., Alonso, J., Le Jean, M., Ecker, J. R. and Briat, J.-F. (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport, Biochem. J. 347, 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J.-F. and Walker, E. L. (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake, Nature 409, 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Diers, B. K., Cianzio, S. R. and Shoemaker, R. C. (1992) Possible identification of quantitative trait loci affecting iron efficiency in soybean, J. Plant Nutr. 15, 2127–2136.

    Article  CAS  Google Scholar 

  • Eckhardt, U., Mas Marquez, A. and Buckhout, T. J. (2001) Two-iron regulated cation transporters from tomato complement metal uptake-deficient yeast mutants, Plant Mol. Biol. 45, 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Eide, D., Broderious, M., Fett, J. and Guerinot, M. L. (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast, P. Natl. Acad. Sci. USA 93, 5624–5628.

    Article  CAS  Google Scholar 

  • Eng, B., Guerinot, M. L., Eide, D. and Saier, M. Jr. (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transporter proteins, J. Membrane Biol. 166, 1–7.

    Article  CAS  Google Scholar 

  • Fox, T. C. and Guerinot, M. L. (1998) Molecular biology of cation transport in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 669–696.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, K. (1996) Advances in rice chromosome research, 1990–95, In Proceedings of the Third International Rice Genetics Symposium, IRRI, Manila, Philippines, pp. 117–130.

    Chapter  Google Scholar 

  • Fushiya, S., Takahashi, K., Nakatsuyama, S., Sato, Y., Nozoe, S. and Takagi, S. I. (1982) Cooccurrence of nicotianamine and avenic acids in Avena sativa and Oriza sativa, Biochemistry 21, 1907–1908.

    CAS  Google Scholar 

  • Grant, D., Cregan, P. and Shoemaker, R. C. (2000) Genome organization in dicots: Genome duplication in Arabidopsis and synteny between soybean and Arabidopsis, P. Natl. Acad. Sci. USA 97, 4168–4173.

    Article  CAS  Google Scholar 

  • Guerinot, M. L. (2000) The ZIP family of metal transporters, Biochim. Biophys. Acta 1465, 190–198.

    Article  CAS  PubMed  Google Scholar 

  • Guerinot, M. L. (2001) Improving rice yields - ironing out the details, Nature Biotech. 19, 417–418.

    Article  CAS  Google Scholar 

  • Hell, R. and Stephan, U. (2003). Iron uptake, trafficking and homeostasis in plants, Planta 216, 541–551.

    CAS  PubMed  Google Scholar 

  • Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N. K. and Mori, S. (1999) Cloning of nicotianamine synthase, novel genes involved in the biosynthesis of phytosiderophores, Plant Physiol 119, 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Hymowitz, T. (2004) Speciation and cytogenetics, In H. R. Boerma and J. E. Specht (eds.), Soybeans: Improvement, Production and Uses. 2004, American Society of Agronomy, Crop Science of America, Soil Science Society of America Publishers, Madison, Wisconsin, USA, pp. 97–136.

    Google Scholar 

  • Jennings, P. R. (1966) Evaluation of partial sterility in indica x japonica rice hybrids, Int. Rice Res. Inst. Tech. Bull. 5, Los Banos, Philippines.

    Google Scholar 

  • Jiang, T., Goto, F. and Yoshihara, T. (2004) The expression of endogenous ferritin genes in transgenic tobacco simultaneously expressing exogenous soybean ferritin gene, In Abstracts, XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 10.

    Google Scholar 

  • Jolley, V. and Brown, J. C. (1991) Differential response of Fe-efficient corn and Fe-inefficient corn and oats to phytosiderophore released by Fe-efficient Coker227 oats, J. Plant Nutr. 14, 45–58.

    Article  CAS  Google Scholar 

  • Kobayashi, T., Nakanishi, H., Takahashi, M., Kawasaki, S., Nishizawa, N. K. and Mori, S. (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2’-deoxymugeneic acid to mugineic acid in transgenic rice, Planta 212, 864–871.

    Article  CAS  PubMed  Google Scholar 

  • Koike, S., Mizuno, D., Inoue, H., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2004) Characterization of PsYSL genes, In Abstracts, XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 203.

    Google Scholar 

  • Korcak, R. F. (1987) Iron deficiency chlorosis, Hortic. Rev. 9, 133–185.

    CAS  Google Scholar 

  • Korshunova, Y., Eide, D., Clark, W., Guerinot, M. L. and Pakrasi, H. (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range, Plant Mol. Biol. 40, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Lanquar, V., Lelievre, F., Vansuyt, G., Curie, C., Schroder, A., Kramer, U., Barbier-Brygoo, H. and Thomine, S. (2004) ATNRAMP3 and ATNRAMP4 encode redundant metal transporters involved in the mobilization of vacuolar iron pools, In Abstracts, XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 42.

    Google Scholar 

  • Lee, J. M., Grant, D., Vallejos, C. E. and Shoemaker, R. C. (2001) Genome organization in dicots: Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes, Theor. Appl. Genet. 103, 765–773.

    Article  CAS  Google Scholar 

  • Lin, S., Baumer, J., Drew, I., Cianzio, S. R. and Shoemaker, R. C. (2000a) Nutrient solution screening of Fe chlorosis resistance in soybean evaluated by molecular characterization, J. Plant Nutr. 23, 1915–1928.

    Article  CAS  Google Scholar 

  • Lin, S., Grant, D., Cianzio, S. R. and Shoemaker, R. C. (2000b) Molecular characterization of iron deficiency chlorosis in soybean, J. Plant Nutr. 23, 1929–1939.

    Article  CAS  Google Scholar 

  • Marschner, H. (1986) Mineral Nutrition of Plants, Academic Press, New York, USA.

    Google Scholar 

  • Marschner, H. and Römheld, V. (1994) Strategies of plants for acquisition of iron, Plant Soil 165, 261–274.

    Article  CAS  Google Scholar 

  • Mori, S. (1999) Iron acquisition by plants, Curr. Opin. Plant Biol. 2, 250–253.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Hachisuka, M., Kawai, S., Takagi, S. and Nishizawa, N. (1988) Peptides related to phytosiderophore secretion by Fe-deficient barley roots, J. Plant Nutr. 11, 653–662.

    Article  CAS  Google Scholar 

  • Mori, S., Nakanishi, H., Takahashi, M., Higuchi, K., and Nishizawa, N. K. (2001) Genetic engineering of transgenic rice with barley Strategy-II genes, In W. J. Horst et al. (ed.), Plant Nutrition-Food Security and Sustainability of Agro-Ecosystems, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 14–15.

    Google Scholar 

  • Mori, S., Nishizawa, N., Hayashi, H., Chino, M., Yoshimura, E. and Ishihara, J. (1991) Why are young rice plants highly susceptible to iron deficiency ? Plant Soil 130, 143–156.

    Article  CAS  Google Scholar 

  • Morris, E. R. (1987) Iron, In W. Mertz (ed.), Trace Elements in Human and Animal Nutrition, Vol. I. 5th ed. Academic Press, New York, USA, pp. 79–142.

    Google Scholar 

  • Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fijii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S. and Nishizawa, N. K. (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosyderophore secretion in Fe-deficient barley root, Plant J. 30, 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Nerkar, Y. S., Misal, M. B. and Marekar, E. V. (1984) PBN 1, a semidwarf upland rice cultivar tolerant of iron deficiency, Int. Rice Res. Newsl. 9, 15–16.

    Google Scholar 

  • Nishizawa, N. (2004) Identification of iron deficiency responsive elements, IDE1and IDE2 in plants, In Abstracts, XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 20.

    Google Scholar 

  • Parrott, W. A., and Clemente, T. E. (2004) Transgenic soybean, In H. R. Boerma and J. E. Specht (eds.), Soybeans: Improvement, Production, and Uses. 2004, American Society of Agronomy, Crop Science of America, Soil Science Society of America Publishers, Madison, Wisconsin, USA, pp. 265–302.

    Google Scholar 

  • Roberts, L. A., Pierson, A. J., Panaviene, Z., and Walker, E. L. (2004) Yellow Stripe1. Expanded roles for maize iron-phytosiderophore transporter, Plant Physiol. 135, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, N. J., Procter, C. M., Connolly, E. L., and Guerinot, M. L. (1999) A ferric-chelate reductase for iron uptake from soils, Nature 397, 694–697.

    Article  CAS  PubMed  Google Scholar 

  • Römheld, V., Lanfranchi, S., Yehuda, Z., Basso, B., and Neuman, G. (2004) A maize mutant defective in process of phytosiderophore secretion, In Abstracts, XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, p. 207.

    Google Scholar 

  • Römheld, V. and Marschner, H. (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses, Plant Physiol. 80, 175–180.

    Article  PubMed  Google Scholar 

  • Rogers, E. E. and Guerinot, M. L. (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14, 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  • Russell, W. A. and Hallauer, A. R. (1980) Corn, In W. R. Fehr and H. H. Hadley (eds.), Hybridization of Crop Plants. 1980, American Society of Agronomy and Crop Science of America Publishers, Madison, Wisconsin, USA, pp. 299–312.

    Google Scholar 

  • Schmidt, W. (1999) Mechanisms and regulation of reduction-based iron uptake in plants, New Phytol. 141, 1–26.

    Article  CAS  Google Scholar 

  • Shoemaker, R. C., Cregan, P. B. and Vodkin, L. O. (2004) Soybean genomics, In H. R. Boerma and J. E. Specht (eds.), Soybeans: Improvement, Production, and Uses. 2004, American Society of Agronomy, Crop Science of America, Soils Science Society of America, Publishers, Madison, Wisconsin, USA, pp. 235–263.

    Google Scholar 

  • Suzuki, K., Higuchi, K., Nakanishi, H., Nishizawa, N. K. and Mori, S. (1999) Cloning of nicotianamine synthase genes from Arabidopsis thaliana, Soil Sci. Plant Nutr. 45, 993–1002.

    CAS  Google Scholar 

  • Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiry, T., Nishizawa, N. K. and Mori, S. (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants, Plant Physiol. 121, 947–956.

    Article  CAS  PubMed  Google Scholar 

  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M. and Schroeder, J. I. (2000) Cadmium and iron transport by members of a plant transporter family in Arabidopsis with homology to Nramp genes, P. Natl. Acad. Sci. USA 97, 4991–4996.

    Article  CAS  Google Scholar 

  • Varotto, C., Aiwald, D., Pesaresi, P., Jahns, P., Salamini, F. and Leister, D. (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana, Plant J. 31, 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Briat, J.-F. and Curie, C. (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter, Plant J. 26, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F. and Curie, C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth, Plant Cell 14, 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Von Wirén, N., Mori, S., Marschner, H. and Römheld, V. (1994) Iron efficiency in maize mutant ys1 (Zea mays L. cv. Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophore, Plant Physiol 106, 71–77.

    Google Scholar 

  • Von Wirén, N., Römheld, V. and Marschner, H. (1993) Evaluation of Strategy I mechanism in iron efficient and inefficient maize cultivars, Plant Soil 155/156, 445–448.

    Article  Google Scholar 

  • Waters, B. M., Blevins, D. G. and Eide, D. J. (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition, Plant Physiol. 129, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, M. (1943) Inheritance and physiology of efficiency in iron utilization in soybeans, Genetics 28, 253–268.

    CAS  PubMed  Google Scholar 

  • Welch, R. M, Mortvedt, J. J., Cox, F. R. and Shuman, L. M. (1991) Geographic distribution of trace elements, In J. J. Mortvedt, F. R. Cox, L. M. Shuman and R. M. Welch (eds.), Micronutrients in Agriculture, 2nd Edition, Number 4 in the Soil Science Society of America Book Series, Soil Science Society of America Inc., Madison, Wisconsin, USA, pp. 41–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Cianzio, S.R., Shoemaker, R.C., Charlson, D.V. (2006). Genomic Resources of Agronomic Crops. In: Barton, L.L., Abadia, J. (eds) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_22

Download citation

Publish with us

Policies and ethics