Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, S., Ticconi, C. A. and Delatorre, C. A. (2002) Phosphate sensing in higher plants, Physiol. Plant. 115, 1-8.

    CAS  PubMed  Google Scholar 

  • Armengaud, P., Breitling, R. and Amtmann, A. (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling, Plant Physiol. 136, 2556-2576.

    CAS  PubMed  Google Scholar 

  • Barker, A. V. and Corey, K. A. (1988) Ethylene evolution by tomato plants under nutrient stress, HortScience 23, 202-203.

    CAS  Google Scholar 

  • Battal, P., Turker, M. and Tileklioglu, B. (2003) Effects of different mineral nutrients on abscisic acid in maize (Zea mays), Ann. Bot. Fenn. 40, 301-308.

    CAS  Google Scholar 

  • Bhalerao, R. P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M. and Sandberg, G. (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings, Plant J. 29, 325-332.

    CAS  PubMed  Google Scholar 

  • Bienfait, H. F. (1987) Biochemical basis of iron efficiency reactions in plants, In G. Winkelmann, D. van der Helm and J. B. Neilands (eds.), Iron Transport in Microbes, Plants and Animals, VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp. 339-349.

    Google Scholar 

  • Bienfait, H. F. (1988) Proteins under the control of the gene for Fe efficiency in tomato, Plant Physiol. 88, 785-787.

    CAS  PubMed  Google Scholar 

  • Bienfait, H. F., De Weger, L. A. and Kramer, D. (1987) Control of development of iron-efficiency reactions in potato as a response to iron deficiency is located in the roots, Plant Physiol. 83, 244-247.

    CAS  PubMed  Google Scholar 

  • Borch, K., Bouma, T. J., Lynch, J. P. and Brown, K. M. (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability, Plant Cell Environ. 22, 425-431.

    CAS  Google Scholar 

  • Burleigh, S. H. and Harrison, M. J. (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots, Plant Physiol. 119, 241-248.

    CAS  PubMed  Google Scholar 

  • Campbell, W. H. and Redinbaugh, M. G. (1984) Ferric-citrate reductase activity of nitrate reductase and its role in iron assimilation by plants, J. Plant Nutr. 7, 799-806.

    CAS  Google Scholar 

  • Connolly, E. L., Campbell, N. H., Grotz, N., Prichard, C. L. and Guerinot, M. L. (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control, Plant Physiol. 133, 1102-1110.

    CAS  PubMed  Google Scholar 

  • Connolly, E. L., Fett, J. P. and Guerinot, M. L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell 14, 1347-1357.

    CAS  PubMed  Google Scholar 

  • Curie, C. and Briat, J.-F. (2003) Iron transport and signaling in plants, Annu. Rev. Plant Biol. 54, 183-206.

    CAS  PubMed  Google Scholar 

  • D’Agostino, I. B. and Kieber, J. J. (1999) Molecular mechanism of cytokinin action, Curr. Opin. Plant Biol. 2, 359-364.

    PubMed  Google Scholar 

  • De la Guardia, M. D., Alcántara, E. and Fernández, M. (1988) Iron reduction by sunflower roots under iron stress, In F. L. Crane, D. J. Morré and H. Löw (eds.), Proceedings NATO Advanced Research Workshop on Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, Plenum Press, New York, USA, pp. 430.

    Google Scholar 

  • Dharmasiri, N. and Estelle, M. (2004) Auxin signaling and regulated protein degradation, Trends Plant Sci. 9, 302-308.

    CAS  PubMed  Google Scholar 

  • Dinkelaker, B., Hengeler, C. and Marschner, H. (1995) Distribution and function of proteoid rests and other root clusters, Bot. Acta 108, 183-200.

    Google Scholar 

  • Finlayson, S. A., Foster, K. R. and Reid, M. (1991) Transport and metabolism of1aminocyclopropane-1-carboxylic acid in sunflower (Helianthuss annuus L.) seedlings, Plant Physiol. 96, 1360-1367.

    CAS  PubMed  Google Scholar 

  • Finlayson, S. A., Liu, J. H. and Reid, M. (1996) Localization of ethylene biosynthesis in roots of sunflower (Helianthus annuus) seedlings, Physiol. Plant. 96, 36-42.

    CAS  Google Scholar 

  • Forde, B. G. (2002) The role of long-distance signalling in plant responses to nitrate and other nutrients, J. Exp. Bot. 53, 39-43.

    CAS  PubMed  Google Scholar 

  • Franco-Zorrilla, J. M., González, E., Bustos, R., Linhares, F., Leyva, A. and Paz-Ares, J. (2004) The transcriptional control of plant responses to phosphate limitation, J. Exp. Bot. 55, 285-293.

    CAS  PubMed  Google Scholar 

  • Friml, J. and Palme, K. (2002) Polar auxin transport - old questions and new concepts?, Plant Mol. Biol. 49, 273-284.

    CAS  PubMed  Google Scholar 

  • Gawronska, H., Deji, A., Sakakibara, H. and Sugiyama, T. (2003) Hormone-mediated nitrogen signaling in plants: implication of participation of abscisic acid in negative regulation of cytokinin-inducible expression of maize response regulator, Plant Physiol. Biochem. 41, 605-610.

    CAS  Google Scholar 

  • Gazzarrini, S. and McCourt, P. (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us, Ann. Bot. 91, 605-612.

    CAS  PubMed  Google Scholar 

  • Gilbert, G. A., Knight, J. D., Vance, C. P. and Allan, D. L. (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate, Ann. Bot. 85, 921-928.

    CAS  Google Scholar 

  • Gogorcena, Y., Abadía, J. and Abadía, A. (2004) A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations, J. Plant Nutr. 27, 1707-1715.

    Google Scholar 

  • Graziano, M., Beligni, M. V. and Lamattina, L. (2002) Nitric oxide improves internal iron availability in plants, Plant Physiol. 130, 1852-1859.

    CAS  PubMed  Google Scholar 

  • Grusak, M. A. (1995) Whole-root iron(III)-reductase activity throughout the life cycle of iron-grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds, Planta 197, 111-117.

    CAS  Google Scholar 

  • Grusak, M. A. and Pezeshgi, S. (1996) Shoot-to-root signal transmission regulates root Fe(III) reductase in the dgl mutant of pea, Plant Physiol. 110, 329-334.

    CAS  PubMed  Google Scholar 

  • Guinel, F. C. and LaRue, T. A. (1992) Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz), Plant Physiol. 99, 515-518.

    CAS  PubMed  Google Scholar 

  • Guo, H. and Ecker, J. R. (2004) The ethylene signaling pathway: new insights, Curr. Opin. Plant Biol. 7, 40- 49.

    CAS  PubMed  Google Scholar 

  • Hansen, H. and Grossmann, K. (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition, Plant Physiol. 124, 1437-1448.

    CAS  PubMed  Google Scholar 

  • He, C. J., Morgan, P. W. and Drew, M. C. (1992) Enhanced sensitivity to ethylene in nitrogen-starved or phosphate-starved roots of Zea-mays L. during aerenchyma formation, Plant Physiol. 98, 137-142.

    CAS  PubMed  Google Scholar 

  • Higuchi, K., Tani, M., Nakanishi, H., Yoshihara, T., Goto, F., Nishizawa, N. K. and Mori, S. (2001) The expression of a barley HvNAS1 nicotianamine synthase gene promoter-gus fusion gene in transgenic tobacco is induced by Fe-deficiency in roots, Biosci. Biotech. Bioch. 65, 1692-1696.

    CAS  Google Scholar 

  • Jackson, M. B. (1985) Ethylene and responses of plants to soil waterlogging and submergence, Annu. Rev. Plant Physiol. 36, 145-174.

    CAS  Google Scholar 

  • Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z. G., Latche, A., Pech, J. C. and Bouzayen, M. (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy fruit, Plant J. 32, 603-613.

    CAS  PubMed  Google Scholar 

  • Juszczuk, I., Malusà, E. and Rychter, A. M. (2001) Oxidative stress during phosphate deficiency in roots of bean plants(Phaseolus vulgaris L.), J. Plant Physiol. 158, 1299-1305.

    CAS  Google Scholar 

  • Klee, H. (2004) Ethylene signal transduction. Moving beyond Arabidopsis, Plant Physiol. 135, 660-667.

    CAS  PubMed  Google Scholar 

  • Kuiper, D., Kuiper, P. J. C., Lambers, H., Schuit, J. and Staal, M. (1989) Cytokinin concentration in relation to mineral nutrition and benzyl adenine treatment in Plantago major ssp. Pleiosperma, Physiol. Plant. 75, 511-517.

    CAS  Google Scholar 

  • Landsberg, E. C. (1981a) Energy driven H+ efflux pump in sunflower roots - Activated by Fe-deficiency stress, Plant Physiol. 67, S 702.

    Google Scholar 

  • Landsberg, E. C. (1981b) Fe stress induced transfer cell formation - Regulated by auxin? Plant Physiol. 67, S 563.

    Google Scholar 

  • Landsberg, E. C. (1981c) Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species, J. Plant Nutr. 3, 579-591.

    CAS  Google Scholar 

  • Landsberg, E. C. (1982) Transfer cell formation in the root epidermis: a prerequisite for Fe-efficiency? J. Plant Nutr. 5, 415-432.

    CAS  Google Scholar 

  • Landsberg, E. C. (1984) Regulation of iron-stress-response by whole plant activity, J. Plant Nutr. 7, 609-621.

    CAS  Google Scholar 

  • Landsberg, E. C. (1986) Function of rhizodermal transfer cells in Fe stress response mechanism of Capsicum annuum L., Plant Physiol. 82, 511-517.

    CAS  PubMed  Google Scholar 

  • Landsberg, E. C. (1996) Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation, Protoplasma 194, 69-80.

    CAS  Google Scholar 

  • Lappartient, A. G., Vidmar, J. J., Leustek, T., Glass, A. D. M. and Touraine, B. (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound, Plant J. 18, 89-95.

    CAS  PubMed  Google Scholar 

  • Leshem, Y. Y. and Pinchasov, Y. (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries (Fragaria x anannasa Duch.) and avocados (Persea americana Mill.), J. Exp. Bot. 51, 1471-1473.

    CAS  PubMed  Google Scholar 

  • Li, C., Zhu, X. and Zhang, F. (2000) Role of shoot in regulation of iron deficiency responses in cucumber and bean plants, J. Plant Nutr. 23, 1809-1818.

    CAS  Google Scholar 

  • Ling, H. Q., Bauer, P., Bereczky, Z., Keller, B. and Ganal, M. (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots, P. Natl. Acad. Sci. USA 99, 13938-13943.

    CAS  Google Scholar 

  • Ljung, K., Bhalerao, R. P. and Sandberg, G. (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth, Plant J. 28, 465-474.

    CAS  PubMed  Google Scholar 

  • Ljung, K., Hull, A. K., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J. D. and Sandberg, G. (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana, Plant Mol. Biol. 49, 249-272.

    CAS  PubMed  Google Scholar 

  • Lobreaux, S., Hardy, T. and Briat, J.-F. (1993) Abscisic acid is involved in the iron-induced synthesis of maize ferritin, EMBO J. 12, 651-657.

    CAS  PubMed  Google Scholar 

  • López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J. and Herrera-Estrella, L. (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system, Plant Physiol. 129, 244-256.

    PubMed  Google Scholar 

  • Luschnig, C., Gaxiola, R. A., Grisafi, P. and Fink, G. R. (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana, Genes Dev. 12, 2175-2187.

    CAS  PubMed  Google Scholar 

  • Lynch, J. P. and Brown, K. M. (1997) Ethylene and plant responses to nutritional stress, Physiol. Plant. 100, 613-619.

    CAS  Google Scholar 

  • Ma, J. F. and Nomoto, K. (1996) Effective regulation of iron acquisition in graminaceous plants - The role of mugineic acids as phytosiderophores, Physiol. Plant. 97, 609-617.

    CAS  Google Scholar 

  • Masucci, I. D. and Schiefelbein, J. W. (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root, Plant Cell 8, 1505-1517.

    CAS  PubMed  Google Scholar 

  • McCluskey, J., Herdman, L. and Skene, K. R. (2004) Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albus, Physiol. Plant. 121, 586-594.

    CAS  Google Scholar 

  • Morgan, P. W. and Drew, M. C. (1997) Ethylene and plant responses to stress, Physiol. Plant. 100, 620-630.

    CAS  Google Scholar 

  • Morgan, P. W. and Hall, W. C. (1962) Effect of 2,4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum, Physiol. Plant. 15, 420-427.

    CAS  Google Scholar 

  • Mori, S. (1999) Iron acquisition by plants, Curr. Opin. Plant Biol. 2, 250-253.

    CAS  PubMed  Google Scholar 

  • Morris, D. A. and Larcombe, N. J. (1995) Pholem transport and conjugation of foliar-applied 1-aminocyclopropane-1-carboxylic acid in cotton (Gossypium hirsutum L.), J. Plant Physiol. 146, 429-436.

    CAS  Google Scholar 

  • Murgia, I., Delledonne, M. and Soave, C. (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis, Plant J. 30, 521-528.

    CAS  PubMed  Google Scholar 

  • Neumann, G., Massonneau, A., Langlade, N., Dinkelaker, N., Hengeler, C., Römheld, V. and Martinoia, E. (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus), Ann. Bot. 85, 909-919.

    CAS  Google Scholar 

  • Neumann, G. and Römheld, V. (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants, Plant Soil 211, 121-130.

    CAS  Google Scholar 

  • Pech, J. C., Latche, A., Bouzayen, M., Wang, H. and Jones, B. (2004) Role of auxin transcription factors in the regulation of fruit development and ripening, Acta Physiol. Plant. 26 (3 Suppl.), 73.

    Google Scholar 

  • Penmetsa, R. V. and Cook, D. R. (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont, Science 275, 527-530.

    CAS  PubMed  Google Scholar 

  • Rahman, A., Hosokawa, S., Oono, Y., Amakawa, T., Goto, N. and Tsurumi, S. (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators, Plant Physiol. 130, 1908-1917.

    CAS  PubMed  Google Scholar 

  • Ranieri, A., Castagna, A., Baldan, B., Sebastiani, L. and Soldatini, G. F. (2003) H2O2 accumulation in sunflower leaves as a consequence of iron deprivation, J. Plant Nutr. 26, 2187-2196.

    CAS  Google Scholar 

  • Rhodes, M. J. C. and Wooltorton, L. S. C. (1973) Stimulation of phenolic acid and lignin biosynthesis in swede root tissue by ethylene, Phytochemistry 12, 107-118.

    CAS  Google Scholar 

  • Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M. and Ecker, J. R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway, Genetics 139, 1393-1409.

    CAS  PubMed  Google Scholar 

  • Romera, F. J. and Alcántara, E. (1994) Iron-deficiency stress responses in cucumber (Cucumis sativus L.) roots: a possible role for ethylene?, Plant Physiol. 105, 1133-1138.

    CAS  PubMed  Google Scholar 

  • Romera, F. J. and Alcántara, E. (2000) Ferric reducing capacity and root swollen tips are differently regulated in Arabidopsis thaliana, In Proceedings of the X International Symposium on Iron Nutrition and Interactions in Plants, Houston, Texas, USA, pp. 75.

    Google Scholar 

  • Romera, F. J. and Alcántara, E. (2003) Ethylene could be involved in the regulation of Fe-deficiency stress responses by Strategy I plants, In M. Vendrell, H. Klee, J. C. Pech and F. Romojaro (eds.). Biology and Biotechnology of the Plant Hormone Ethylene III, IOS Press, Amsterdam, The Netherlands, pp. 100-105.

    Google Scholar 

  • Romera, F. J. and Alcántara, E. (2004) Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants, Funct. Plant Biol. 31, 315-328.

    CAS  Google Scholar 

  • Romera, F. J., Alcántara, E., Bartels, M. and Schmidt, W. (1997) Role of auxin and ethylene on iron stress-induced morphological changes in roots of Strategy I plants, In Proceedings of the IX International Symposium on Iron Nutrition and Interactions in Plants, Stuttgart, Germany, pp. 31.

    Google Scholar 

  • Romera, F. J., Alcántara, E. and De la Guardia, M. D. (1992) Role of roots and shoots in the regulation of the Fe efficiency responses in sunflower and cucumber, Physiol. Plant. 85, 141-146.

    CAS  Google Scholar 

  • Romera, F. J., Alcántara, E. and De la Guardia, M. D. (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by Strategy I plants, Ann. Bot. 83, 51-55.

    CAS  Google Scholar 

  • Romera, F. J., Frejo, V. M. and Alcántara, E. (2003) Simultaneous Fe- and Cu-deficiency synergically accelerates the induction of several Fe-deficiency stress responses in Strategy I plants, Plant Physiol. Bioch. 41, 821-827.

    CAS  Google Scholar 

  • Romera, F. J., Welch, R. M., Norvell, W. A. and Schaefer, S. C. (1996a) Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of Strategy I species, BioMetals 9, 45-50.

    CAS  Google Scholar 

  • Romera, F. J., Welch, R. M., Norvell, W. A., Schaefer, S. C. and Kochian, L. V. (1996b) Ethylene involvement in the over-expression of Fe(III)-chelate reductase by roots of E107 pea [Pisum sativum L. (brz,brz)] and chloronerva tomato (Lycopersicon esculentum L.) mutant genotypes, BioMetals 9, 38-44.

    CAS  Google Scholar 

  • Römheld, V. and Marschner, H. (1981) Rhythmic iron stress reactions in sunflower at suboptimal iron supply, Physiol. Plant. 53, 347-353.

    Google Scholar 

  • Römheld, V. and Marschner, H. (1983) Mechanism of iron uptake by peanut plants. I. FeIII reduction, chelate splitting, and release of phenolics, Plant Physiol. 71, 949-954.

    PubMed  Google Scholar 

  • Römheld, V. and Marschner, H. (1986) Mobilization of iron in the rhizosphere of different plant species, Adv. Plant Nutr. 2, 155-204.

    Google Scholar 

  • Schikora, A. and Schmidt, W. (2001) Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability, Plant Physiol. 125, 1679-1687.

    CAS  PubMed  Google Scholar 

  • Schikora, A. and Schmidt, W. (2002a) Formation of transfer cells and H+-ATPase expression in tomato roots under P and Fe deficiency, Planta 215, 304-311.

    CAS  PubMed  Google Scholar 

  • Schikora, A. and Schmidt, W. (2002b) Modulation of the root epidermal phenotype by hormones, inhibitors and iron regime, Plant Soil 241, 87-96.

    CAS  Google Scholar 

  • Schmerder, B. and Borriss, H. (1986) Induction of nitrate reductase by cytokinin and ethylene in Agrostemma githago embryos, Planta 169, 589-593.

    CAS  Google Scholar 

  • Schmidt, J. S., Harper, J. E., Hoffman, T. K. and Bent, A. F. (1999) Regulation of soybean nodulation independent of ethylene signaling, Plant Physiol. 119, 951-959.

    CAS  PubMed  Google Scholar 

  • Schmidt, W. (1994) Root-mediated ferric reduction-responses to iron deficiency, exogenously induced changes in hormonal balance and inhibition of protein synthesis, J. Exp. Bot. 45, 725-731.

    CAS  Google Scholar 

  • Schmidt, W. (2003) Iron solutions: acquisition strategies and signaling pathways in plants, Trends Plant Sci. 8, 188-193.

    CAS  PubMed  Google Scholar 

  • Schmidt, W. and Bartels, M. (1996) Formation of root epidermal transfer cells in Plantago, Plant Physiol. 110, 217-225.

    CAS  PubMed  Google Scholar 

  • Schmidt, W., Boomgaarden, B. and Ahrens, V. (1996) Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency, Physiol. Plant. 98, 587-593.

    CAS  Google Scholar 

  • Schmidt, W., Michalke, W. and Schikora, A. (2003) Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in rhizodermal cells, Plant Cell Environ. 26, 361-370.

    CAS  Google Scholar 

  • Schmidt, W. and Schikora, A. (2001) Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development, Plant Physiol. 125, 2078-2084.

    CAS  PubMed  Google Scholar 

  • Schmidt, W., Schikora, A., Pich, A. and Bartels, M. (2000a) Hormones induce an Fe-deficiency-like root epidermal cell pattern in the Fe-inefficient tomato mutant fer, Protoplasma 213, 67-73.

    CAS  Google Scholar 

  • Schmidt, W., Tittel, J. and Schikora, A. (2000b) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots, Plant Physiol. 122, 1109-1118.

    CAS  PubMed  Google Scholar 

  • Shin, R. and Schachtman, D. P. (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation, P. Natl. Acad. Sci. USA 101, 8827-8832.

    CAS  Google Scholar 

  • Sijmons, P. C. and Bienfait, H. F. (1986) Development of Fe3+reduction activity and H+ extrusion during growth of iron-deficient bean plants in a rhizostat, Biochem. Physiol. Pflanzen 181, 283-299.

    CAS  Google Scholar 

  • Stitt, M. and Feil, R. (1999) Lateral root frequency decreases when nitrate accumulates in tobacco transformants with low nitrate reductase activity: consequences for the regulation of biomass partitioning between shoots and root, Plant Soil 215, 143-153.

    CAS  Google Scholar 

  • Suzuki, K., Nakanishi, H., Nishizawa, N. K. and Mori, S. (2001) Analysis of upstream region of nicotianamine synthase gene from Arabidopsis thaliana: presence of putative ERE-like sequence, Biosci. Biotech. Bioch. 65, 2794-2797.

    CAS  Google Scholar 

  • Swarup, R., Parry, G., Graham, N., Allen, T. and Bennett, M. (2002) Auxin cross-talk: integration of signalling pathways to control plant development, Plant Mol. Biol. 49, 411-426.

    CAS  PubMed  Google Scholar 

  • Takahashi, H., Kawahara, A. and Inoue, Y. (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings, Plant Cell Physiol. 44, 932-940.

    CAS  PubMed  Google Scholar 

  • Takei, K., Sakakibara, H., Taniguchi, M. and Sugiyama, T. (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator, Plant Cell Physiol. 42, 85-93.

    CAS  PubMed  Google Scholar 

  • Vert, G. A., Briat, J.-F. and Curie, C. (2003) Dual regulation of the high-affinity root iron uptake system by local and long-distance signals, Plant Physiol. 132, 796-804.

    CAS  PubMed  Google Scholar 

  • Vuylsteker, C., Leleu, O. and Rambour, S. (1997) Influence of BAP and NAA on the expression of nitrate reductase in excised chicory roots, J. Exp. Bot. 48, 1079-1085.

    CAS  Google Scholar 

  • Wang, K. L. C., Li, H. and Ecker, J. R. (2002) Ethylene biosynthesis and signaling networks, Plant Cell, Supplement 2002, S131-S151.

    Google Scholar 

  • Waters, B. M. and Blevins, D. G. (2000) Ethylene production, cluster root formation, and localization of iron( III ) reducing capacity in Fe deficient squash roots, Plant Soil 225, 21-31.

    CAS  Google Scholar 

  • Watt, M. and Evans, J. R. (1999) Proteoid roots. Physiology and development, Plant Physiol. 121, 317-323.

    CAS  PubMed  Google Scholar 

  • Welch, R. M., Norvell, W. A., Gesuwan, P. and Schaefer, S. (1997) Possible role of root-ethylene in Fe(III)-phytometallophore uptake in Strategy II species, Plant Soil 196, 229-232.

    CAS  Google Scholar 

  • Yan, F., Zhu, Y., Müller, C., Zörb, C. and Schubert, S. (2002) Adaptation of H+-pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiency, Plant Physiol. 129, 50-63.

    CAS  PubMed  Google Scholar 

  • Yang, S. F. and Hoffman, N. E. (1984) Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 35, 155-189.

    CAS  Google Scholar 

  • Yoshihara, T., Kobayashi, T., Goto, F., Masuda, T., Higuchi, K., Nakanishi, H., Nishizawa, N. K. and Mori, S. (2003) Regulation of the iron-deficiency responsive gene, Ids2, of barley in tobacco, Plant Biotech. 20, 33- 41.

    CAS  Google Scholar 

  • Zaïd, E. H., Arahou, M., Diem, H. G. and El Morabet, R. (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species?, Plant Soil 248, 229-235.

    Google Scholar 

  • Zhang, Y. J., Lynch, J. P. and Brown, K. M. (2003) Ethylene and phosphorus availability have interacting yet distint effects on root hair development, J. Exp. Bot. 54, 2351-2361.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Romera, F.J., Lucena, C., Alcàntara, E. (2006). Plant Hormones Influencing Iron Uptake in Plants. In: Barton, L.L., Abadia, J. (eds) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_12

Download citation

Publish with us

Policies and ethics