Trafficking of Serine/Threonine Kinase Receptors and Smad Activation

  • Christine Le Roy
  • Rohit Bose
  • Jeffrey L. Wrana
Part of the Proteins and Cell Regulation book series (PROR, volume 5)


Signaling by the transforming growth factor-β (TGF-β) family of growth factors involves cell surface receptor serine/threonine kinases and downstream components such as SARA and Smurfs, which bind the receptor substrates called the Smad proteins. These components partition between two endocytic pathways, which lead to two separate functions in TGF-β signaling. On the one hand, clathrin-dependent endocytosis promotes signaling by leading the receptor to the early endosome where SARA is localized. On the other, non-clathrin pathways, which are enriched for the Smurf ubiquitin ligases, lead the receptor to degradation. However, in polarized cells, ligand addition induces TGF-β receptor trafficking into junctional regions of the cell where activation of Smad-dependent and -independent pathways mediates the process of epithelial-to-mesenchymal transition, which is critical during development and tumorigenesis. In this chapter, we will focus on how compartmentalization of TGF-β receptors and their downstream components controls TGF-β signaling and its biological functions


caveolin EMT endocytosis Par6 polarity SARA Smurf TGF-β TGF-β receptor trafficking clathrin lipid-rafts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attisano, L., and Wrana, J.L., 1996, Signal transduction by members of the transforming growth factor-β superfamily. Cytokine Growth Factor Rev 7: 327-339.PubMedCrossRefGoogle Scholar
  2. Aubin, J., Davy, A., and Soriano, P., 2004, In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 18: 1482-1494.PubMedCrossRefGoogle Scholar
  3. Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I.W., Luga, V., Przulj, N., Robinson, M., Suzuki, H., Hayashizaki, Y., Jurisica, I., and Wrana, J.L., 2005, High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621-1625.PubMedCrossRefGoogle Scholar
  4. Bonni, S., Wang, H.R., Causing, C.G., Kavsak, P., Stroschein, S.L., Luo, K., and Wrana, J.L., 2001, TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3: 587-595.PubMedCrossRefGoogle Scholar
  5. Chen, W., Kirkbride, K.C., How, T., Nelson, C.D., Mo, J., Frederick, J.P., Wang, X.F., Lefkowitz, R.J., and Blobe, G.C., 2003, β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301: 1394-1397.PubMedCrossRefGoogle Scholar
  6. Chen, Y.G., Hata, A., Lo, R.S., Wotton, D., Shi, Y., Pavletich, N., and Massagué, J., 1998, Determinants of specificity in TGF-β signal transduction. Genes Dev 12: 2144-2152.PubMedGoogle Scholar
  7. Chong, P.A., Ozdamar, B., Wrana, J.L., and Forman-Kay, J.D., 2004, Disorder in a target for the smad2 mad homology 2 domain and its implications for binding and specificity. J Biol Chem 279: 40707-40714.PubMedCrossRefGoogle Scholar
  8. Ciechanover, A., Orian, A., and Schwartz, A.L., 2000, Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22: 442-451.PubMedCrossRefGoogle Scholar
  9. Conner, S.D., and Schmid, S.L., 2003, Regulated portals of entry into the cell. Nature 422: 37-44.PubMedCrossRefGoogle Scholar
  10. Derynck, R., and Zhang, Y.E., 2003, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577-584.PubMedCrossRefGoogle Scholar
  11. Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F., and Wrana, J.L., 2003, Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5: 410-421.PubMedCrossRefGoogle Scholar
  12. Dyson, S., and Gurdon, J.B., 1998, The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93: 557-568.PubMedCrossRefGoogle Scholar
  13. Ebisawa, T., Fukuchi, M., Murakami, G., Chiba, T., Tanaka, K., Imamura, T., and Miyazono, K., 2001, Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276: 12477-12480.PubMedCrossRefGoogle Scholar
  14. Ehrlich, M., Shmuely, A., and Henis, Y.I., 2001, A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-β receptor. J Cell Sci 114: 1777-1786.PubMedGoogle Scholar
  15. Feng, X.H., and Derynck, R., 1997, A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. EMBO J 16: 3912-3923.PubMedCrossRefGoogle Scholar
  16. Feng, X.H., and Derynck, R., 2005, Specificity and Versatility in TGF- Signaling Through Smads. Annu Rev Cell Dev Biol.Google Scholar
  17. Georgi, L.L., Albert, P.S., and Riddle, D.L., 1990, daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 61: 635-645.PubMedCrossRefGoogle Scholar
  18. Gilboa, L., Wells, R.G., Lodish, H.F., and Henis, Y.I., 1998, Oligomeric structure of type I and type II transforming growth factor β receptors: homodimers form in the ER and persist at the plasma membrane. J Cell Biol 140: 767-777.PubMedCrossRefGoogle Scholar
  19. Gruenberg, J., and Stenmark, H., 2004, The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5: 317-323.PubMedCrossRefGoogle Scholar
  20. Grunert, S., Jechlinger, M., and Beug, H., 2003, Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657-665.PubMedCrossRefGoogle Scholar
  21. Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y.Y., Grinnell, B.W., Richardson, M.A., Topper, J.N., Gimbrone, M.A., Jr., Wrana, J.L., and Falb, D., 1997, The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89: 1165-1173.PubMedCrossRefGoogle Scholar
  22. Hayes, S., Chawla, A., and Corvera, S., 2002, TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158: 1239-1249.PubMedCrossRefGoogle Scholar
  23. Heldin, C.-H., Miyazono, K., and ten Dijke, P., 1997, TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471.PubMedCrossRefGoogle Scholar
  24. Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K., 1997, Smad6 inhibits signalling by the TGF-β superfamily. Nature 389: 622-626.PubMedCrossRefGoogle Scholar
  25. Ito, T., Williams, J.D., Fraser, D.J., and Phillips, A.O., 2004, Hyaluronan regulates transforming growth factor-β1 receptor compartmentalization. J Biol Chem 279: 25326-25332.PubMedCrossRefGoogle Scholar
  26. Itoh, F., Divecha, N., Brocks, L., Oomen, L., Janssen, H., Calafat, J., Itoh, S., and ten Dijke, P., 2002, The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 7: 321-331.PubMedCrossRefGoogle Scholar
  27. Izzi, L., and Attisano, L., 2004, Regulation of the TGFβ signalling pathway by ubiquitin-mediated degradation. Oncogene 23: 2071-2078.PubMedCrossRefGoogle Scholar
  28. Kavsak, P., Rasmussen, R.K., Causing, C.G., Bonni, S., Zhu, H., Thomsen, G.H., and Wrana, J.L., 2000, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol Cell 6: 1365-1375.PubMedCrossRefGoogle Scholar
  29. Kuratomi, G., Komuro, A., Goto, K., Shinozaki, M., Miyazawa, K., Miyazono, K., and Imamura, T., 2005, NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochem J 386: 461-470.PubMedCrossRefGoogle Scholar
  30. Lallemand, F., Seo, S.R., Ferrand, N., Pessah, M., L’Hoste, S., Rawadi, G., Roman-Roman, S., Camonis, J., and Atfi, A., 2005, AIP4 restricts transforming growth factor-β signaling through a ubiquitination-independent mechanism. J Biol Chem 280: 27645-27653.PubMedCrossRefGoogle Scholar
  31. Le Roy, C., and Wrana, J.L., 2005, Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6: 112-126.PubMedCrossRefGoogle Scholar
  32. Lemmon, M.A., 2003, Phosphoinositide recognition domains. Traffic 4: 201-213.PubMedCrossRefGoogle Scholar
  33. Lin, H.K., Bergmann, S., and Pandolfi, P.P., 2004, Cytoplasmic PML function in TGF-β signalling. Nature 431: 205-211.PubMedCrossRefGoogle Scholar
  34. Lin, X., Liang, M., and Feng, X.H., 2000, Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling. J Biol Chem 275: 36818-36822.PubMedCrossRefGoogle Scholar
  35. Lo, R.S., Chen, Y.G., Shi, Y., Pavletich, N.P., and Massagué, J., 1998, The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J 17: 996-1005.PubMedCrossRefGoogle Scholar
  36. Lo, R.S., and Massagué, J., 1999, Ubiquitin-dependent degradation of TGF-β-activated smad2. Nat Cell Biol 1: 472-478.PubMedCrossRefGoogle Scholar
  37. Lu, Z., Murray, J.T., Luo, W., Li, H., Wu, X., Xu, H., Backer, J.M., and Chen, Y.G., 2002, Transforming growth factor β activates Smad2 in the absence of receptor endocytosis. J Biol Chem 277: 29363-29368.PubMedCrossRefGoogle Scholar
  38. Macias-Silva, M., Abdollah, S., Hoodless, P.A., Pirone, R., Attisano, L., and Wrana, J.L., 1996, MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87: 1215-1224.PubMedCrossRefGoogle Scholar
  39. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S., 2002, The protein kinase complement of the human genome. Science 298: 1912-1934.PubMedCrossRefGoogle Scholar
  40. Massagué, J., 1998, TGF-β signal transduction. Annu Rev Biochem 67: 753-791.PubMedCrossRefGoogle Scholar
  41. Massagué, J., and Chen, Y.G., 2000, Controlling TGF-β signaling. Genes Dev 14: 627-644.PubMedGoogle Scholar
  42. Mitchell, H., Choudhury, A., Pagano, R.E., and Leof, E.B., 2004, Ligand-Dependent and -Independent TGFβ Receptor Recycling Regulated by Clathrin-mediated Endocytosis and Rab11. Mol Biol Cell.Google Scholar
  43. Miura, S., Takeshita, T., Asao, H., Kimura, Y., Murata, K., Sasaki, Y., Hanai, J.I., Beppu, H., Tsukazaki, T., Wrana, J.L., Miyazono, K., and Sugamura, K., 2000, Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20: 9346-9355.PubMedCrossRefGoogle Scholar
  44. Miyazono, K., ten Dijke, P., and Heldin, C.-H., 2000, TGF-β signaling by Smad proteins. Adv Immunol 75: 115-157.PubMedCrossRefGoogle Scholar
  45. Morén, A., Imamura, T., Miyazono, K., Heldin, C.-H., and Moustakas, A., 2005, Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280: 22115-22123.PubMedCrossRefGoogle Scholar
  46. Murphy, S.J., Dore, J.J., Edens, M., Coffey, R.J., Barnard, J.A., Mitchell, H., Wilkes, M., and Leof, E.B., 2004, Differential trafficking of transforming growth factor-β receptors and ligand in polarized epithelial cells. Mol Biol Cell 15: 2853-2862.PubMedCrossRefGoogle Scholar
  47. Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J.L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N.-E., Heldin, C.-H., and ten Dijke, P., 1997, Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389: 631-635.PubMedCrossRefGoogle Scholar
  48. Ogunjimi, A.A., Briant, D.J., Pece-Barbara, N., Le Roy, C., Di Guglielmo, G.M., Kavsak, P., Rasmussen, R.K., Seet, B.T., Sicheri, F., and Wrana, J.L., 2005, Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19: 297-308.PubMedCrossRefGoogle Scholar
  49. Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.R., Zhang, Y., and Wrana, J.L., 2005, Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307: 1603-1609.PubMedCrossRefGoogle Scholar
  50. Panopoulou, E., Gillooly, D.J., Wrana, J.L., Zerial, M., Stenmark, H., Murphy, C., and Fotsis, T., 2002, Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 277: 18046-18052.PubMedCrossRefGoogle Scholar
  51. Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Wrana, J.L., and Dennis, J.W., 2004, Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306: 120-124.PubMedCrossRefGoogle Scholar
  52. Pelkmans, L., and Helenius, A., 2002, Endocytosis via caveolae. Traffic 3: 311-320.PubMedCrossRefGoogle Scholar
  53. Pelkmans, L., and Zerial, M., 2005, Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436: 128-133.PubMedCrossRefGoogle Scholar
  54. Podos, S.D., Hanson, K.K., Wang, Y.C., and Ferguson, E.L., 2001, The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev Cell 1: 567-578.PubMedCrossRefGoogle Scholar
  55. Razani, B., Zhang, X.L., Bitzer, M., von Gersdorff, G., Böttinger, E.P., and Lisanti, M.P., 2001, Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. J Biol Chem 276: 6727-6738.PubMedCrossRefGoogle Scholar
  56. Runyan, C.E., Schnaper, H.W., and Poncelet, A.C., 2005, The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J Biol Chem 280: 8300-8308.PubMedCrossRefGoogle Scholar
  57. Schwartz, E.A., Reaven, E., Topper, J.N., and Tsao, P.S., 2005, Transforming growth factor-β receptors localize to caveolae and regulate endothelial nitric oxide synthase in normal human endothelial cells. Biochem J 390: 199-206.PubMedCrossRefGoogle Scholar
  58. Seo, S.R., Lallemand, F., Ferrand, N., Pessah, M., L’Hoste, S., Camonis, J., and Atfi, A., 2004, The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23: 3780-3792.PubMedCrossRefGoogle Scholar
  59. Sharma, D.K., Brown, J.C., Choudhury, A., Peterson, T.E., Holicky, E., Marks, D.L., Simari, R., Parton, R.G., and Pagano, R.E., 2004, Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 15: 3114-3122.PubMedCrossRefGoogle Scholar
  60. Shi, Y., and Massagué, J., 2003, Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685-700.PubMedCrossRefGoogle Scholar
  61. Stenmark, H., and Aasland, R., 1999, FYVE-finger proteins–effectors of an inositol lipid. J Cell Sci 112 (Pt 23): 4175-4183.PubMedGoogle Scholar
  62. Stenmark, H., Aasland, R., Toh, B.H., and D’Arrigo, A., 1996, Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271: 24048-24054.PubMedCrossRefGoogle Scholar
  63. Tian, Y.C., and Phillips, A.O., 2002, Interaction between the transforming growth factor-β type II receptor/Smad pathway and β-catenin during transforming growth factor-β1-mediated adherens junction disassembly. Am J Pathol 160: 1619-1628.PubMedGoogle Scholar
  64. Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L., and Wrana, J.L., 1998, SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95: 779-791.PubMedCrossRefGoogle Scholar
  65. Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.-H., and Moustakas, A., 2005, TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16: 1987-2002.PubMedCrossRefGoogle Scholar
  66. Wang, H.R., Zhang, Y., Ozdamar, B., Ogunjimi, A.A., Alexandrova, E., Thomsen, G.H., and Wrana, J.L., 2003, Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775-1779.PubMedCrossRefGoogle Scholar
  67. Vermeer, P.D., Einwalter, L.A., Moninger, T.O., Rokhlina, T., Kern, J.A., Zabner, J., and Welsh, M.J., 2003, Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422: 322-326.PubMedCrossRefGoogle Scholar
  68. Wicks, S.J., Haros, K., Maillard, M., Song, L., Cohen, R.E., Dijke, P.T., and Chantry, A., 2005, The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signalling. Oncogene.Google Scholar
  69. Wrana, J.L., 2000, Regulation of Smad activity. Cell 100: 189-192.PubMedCrossRefGoogle Scholar
  70. Wrana, J.L., Attisano, L., Wieser, R., Ventura, F., and Massagué, J., 1994, Mechanism of activation of the TGF-β receptor. Nature 370: 341-347.PubMedCrossRefGoogle Scholar
  71. Wu, G., Chen, Y.G., Ozdamar, B., Gyuricza, C.A., Chong, P.A., Wrana, J.L., Massagué, J., and Shi, Y., 2000, Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287: 92-97.PubMedCrossRefGoogle Scholar
  72. Yamashita, H., ten Dijke, P., Franzen, P., Miyazono, K., and Heldin, C.-H., 1994, Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β. J Biol Chem 269: 20172-20178.PubMedGoogle Scholar
  73. Yamashita, M., Ying, S.X., Zhang, G.M., Li, C., Cheng, S.Y., Deng, C.X., and Zhang, Y.E., 2005, Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121: 101-113.PubMedCrossRefGoogle Scholar
  74. Yao, D., Ehrlich, M., Henis, Y.I., and Leof, E.B., 2002, Transforming growth factor-β receptors interact with AP2 by direct binding to β2 subunit. Mol Biol Cell 13: 4001-4012.PubMedCrossRefGoogle Scholar
  75. Zhang, X.L., Topley, N., Ito, T., and Phillips, A., 2005, Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β 1 signaling. J Biol Chem 280: 12239-12245.PubMedCrossRefGoogle Scholar
  76. Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A., and Derynck, R., 2001, Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 98: 974-979.PubMedCrossRefGoogle Scholar
  77. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J.L., and Thomsen, G.H., 1999, A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400: 687-693.PubMedCrossRefGoogle Scholar
  78. Zwaagstra, J.C., El-Alfy, M., and O’Connor-McCourt, M.D., 2001, Transforming growth factor (TGF)-β 1 internalization: modulation by ligand interaction with TGF-β receptors types I and II and a mechanism that is distinct from clathrin-mediated endocytosis. J Biol Chem 276: 27237-27245.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Christine Le Roy
    • 1
  • Rohit Bose
    • 1
  • Jeffrey L. Wrana
    • 1
  1. 1.Center for Systems Biology, Department of Medical Genetics and MicrobiologyUniversity of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai HospitalTorontoCanada

Personalised recommendations