Skip to main content

Interplays Between The Smad and Map Kinase Signaling Pathways

  • Chapter
Book cover Smad Signal Transduction

Part of the book series: Proteins and Cell Regulation ((PROR,volume 5))

Abstract

Canonical transcriptional responses to transforming growth factor-β (TGF-β) superfamily members occur via rapid nuclear translocation of cytoplasmic proteins of the Smad family, which are activated by ligand-activated membrane-bound heteromeric serine-threonine kinase receptor complexes. Smad-driven gene expression is strongly dependent upon interactions of with other intracellular signaling mechanisms, initiated or not by TGF-β itself, that may potentiate, synergize, or antagonize, the TGF-β/Smad pathway. Among pathways identified to modulate Smad responses are mitogen-activated protein kinases (MAPKs), a large family of kinases involved in the transmission of diverse extracellular signals from the plasma membrane to the cell nucleus. In this chapter, we describe how MAPKs modify the outcome of Smad activation by TGF-β, and how crosstalk mechanisms between the Smad and MAPK pathways take place and affect cellular behavior and TGF-β target gene expression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abecassis, L., Rogier, E., Vazquez, A., Atfi, A., and Bourgeade, M.F., 2004, Evidence for a role of MSK1 in transforming growth factor-β-mediated responses through p38α and Smad signaling pathways. J Biol Chem 279: 30474-30479.

    Article  PubMed  CAS  Google Scholar 

  • Adachi-Yamada, T., Nakamura, M., Irie, K., Tomoyasu, Y., Sano, Y., Mori, E., Goto, S., Ueno, N., Nishida, Y., and Matsumoto, K. 1999, p38 mitogen-activated protein kinase can be involved in transforming growth factor β superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 19: 2322-2329.

    PubMed  CAS  Google Scholar 

  • Arnulf, B., Villemain, A., Nicot, C., Mordelet, E., Charneau, P., Kersual, J., Zermati, Y., Mauviel, A., Bazarbachi, A., and Hermine, O., 2002, Human T-cell lymphotropic virus oncoprotein Tax represses TGF-β signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 100: 4129-4138.

    Article  PubMed  CAS  Google Scholar 

  • Arsura, M., Panta, G.R., Bilyeu, J.D., Cavin, L.G., Sovak, M.A., Oliver, A.A., Factor, V., Heuchel, R., Mercurio, F., Thorgeirsson, S.S., and Sonenshein, G.E., 2003, Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-β inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22: 412-425.

    Article  PubMed  CAS  Google Scholar 

  • Atfi, A., Djelloul, S., Chastre, E., Davis, R., and Gespach, C., 1997, Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J Biol Chem 272: 1429-1432.

    Article  PubMed  CAS  Google Scholar 

  • Aubin, J., Davy, A., and Soriano, P., 2004, In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 18: 1482-1494.

    Article  PubMed  CAS  Google Scholar 

  • Bagrodia, S., Derijard, B., Davis, R.J., and Cerione, R.A., 1995, Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 270: 27995-27998.

    Article  PubMed  CAS  Google Scholar 

  • Birkey Reffey, S., Wurthner, J.U., Parks, W.T., Roberts, A.B., and Duckett, C.S., 2001, X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-β signaling. J Biol Chem 276: 26542-26549.

    Article  PubMed  CAS  Google Scholar 

  • Brodin, G., Åhgren, A., ten Dijke, P., Heldin, C.-H., and Heuchel, R., 2000, Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J Biol Chem 275: 29023-29030.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.D., DiChiara, M.R., Anderson, K.R., Gimbrone, M.A., Jr., and Topper, J.N., 1999, MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem 274: 8797-8805.

    Article  PubMed  CAS  Google Scholar 

  • Calonge, M.J., and Massagué, J., 1999, Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem 274: 33637-33643.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L., and Karin, M., 2001, Mammalian MAP kinase signalling cascades. Nature 410: 37-40.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.J., 2000, Signal transduction by the JNK group of MAP kinases. Cell 103: 239-252.

    Article  PubMed  CAS  Google Scholar 

  • de Caestecker, M.P., Parks, W.T., Frank, C.J., Castagnino, P., Bottaro, D.P., Roberts, A.B., and Lechleider, R.J., 1998, Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 12: 1587-1592.

    PubMed  Google Scholar 

  • Derynck, R., Akhurst, R.J., and Balmain, A., 2001, TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29: 117-129.

    Article  PubMed  CAS  Google Scholar 

  • Derynck, R., and Zhang, Y.E., 2003, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577-584.

    Article  PubMed  CAS  Google Scholar 

  • Dowdy, S.C., Mariani, A., and Janknecht, R., 2003, HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor β inhibitor Smad7 via the ETS protein ER81. J Biol Chem 278: 44377-44384.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, N., Bakin, A.V., and Arteaga, C.L., 2003, Autocrine transforming growth factor-β signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 278: 3275-3285.

    Article  PubMed  CAS  Google Scholar 

  • Edlund, S., Bu, S., Schuster, N., Aspenström, P., Heuchel, R., Heldin, N.E., ten Dijke, P., Heldin, C.-H., and Lanström, M., 2003, Transforming growth factor-β (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 14: 529-544.

    Article  PubMed  CAS  Google Scholar 

  • Edlund, S., Landström, M., Heldin, C.-H., and Aspenström, P., 2002, Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13: 902-914.

    Article  PubMed  CAS  Google Scholar 

  • Eferl, R., and Wagner, E.F., 2003, AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859-868.

    Article  PubMed  CAS  Google Scholar 

  • Engel, M.E., McDonnell, M.A., Law, B.K., and Moses, H.L., 1999, Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274: 37413-37420.

    Article  PubMed  CAS  Google Scholar 

  • Frodin, M., and Gammeltoft, S., 1999; Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151: 65-77.

    Article  PubMed  CAS  Google Scholar 

  • Funaba, M., Zimmerman, C.M., and Mathews, L.S., 2002, Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 277: 41361-41368.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, O.H., and Gurdon, J.B., 2002, Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nat Cell Biol 4: 519-522.

    Article  PubMed  CAS  Google Scholar 

  • Hanafusa, H., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J., Shibuya, H., Matsumoto, K., and Nishida, E., 1999, Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274: 27161-27167.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, G.J., and Beach, D., 1994, p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371: 257-261.

    Article  PubMed  CAS  Google Scholar 

  • Harlin, H., Reffey, S.B., Duckett, C.S., Lindsten, T., and Thompson, C.B., 2001, Characterization of XIAP-deficient mice. Mol Cell Biol 21: 3604-3608.

    Article  PubMed  CAS  Google Scholar 

  • Hocevar, B.A., Brown, T.L., and Howe, P.H., 1999, TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18: 1345-1356.

    Article  PubMed  CAS  Google Scholar 

  • Hu, P.P., Shen X., Huang D., Liu Y., Counter C., and Wang X.-F., 1999, The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-β. J Biol Chem 274: 35381-35387.

    Article  PubMed  CAS  Google Scholar 

  • Ip, Y.T., and Davis, R.J., 1998, Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr Opin Cell Biol 10: 205-219.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, S., Thorikay, M., Kowanetz, M., Moustakas, A., itoh, F., Heldin, C.-H., and ten Dijke, P., 2003, Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses. J Biol Chem 278: 3751-3761.

    Article  PubMed  CAS  Google Scholar 

  • Javelaud, D., and Mauviel, A., 2005, Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene 24: 5742-5750.

    Article  PubMed  CAS  Google Scholar 

  • Javelaud, D., Laboureau, J., Gabison, E., Verrecchia, F., and Mauviel, A., 2003, Disruption of basal JNK activity differentially affects key fibroblast functions important for wound healing. J Biol Chem 278: 24624-24628.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, N., Ala-aho, R., Uitto, V., Grenman, R., Fusenig, N.,E., Lopez-Otin, C., and Kähäri, V.-M.., 2000, Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113 Pt 2: 227-235.

    Google Scholar 

  • Jonk, L.J., Itoh, S., Heldin, C.-H., ten Dijke, P., and Kruijer, W., 1998, Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem 273: 21145-1152.

    Article  PubMed  CAS  Google Scholar 

  • Kakonen, S.M., Selander, K.S., Chirgwin, J.M., Yin, J.J., Burns, S., Rankin, W.A., Grubbs, B.G., Dallas, M., Cui, Y., and Guise, T.A., 2002, Transforming growth factor-β stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277: 24571-24578.

    Article  PubMed  CAS  Google Scholar 

  • Kamaraju, A.K., and Roberts, A.B., 2005, Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 280: 1024-1036.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E.S., Kim, M.S., and Moon, A., 2004, TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not Erk signaling in MCF10A human breast epithelial cells. Int J Oncol 25: 1375-1382.

    PubMed  CAS  Google Scholar 

  • Kimura, N., Matsuo, R., Shibuya, H., Nakashima, K., and Taga T., 2000, BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275: 17647-17652.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Doody, J., and Massagué, J., 1997, Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389: 618-622.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J., 1999, A mechanism of repression of TGFβ/ Smad signaling by oncogenic Ras. Genes Dev 13: 804-816.

    PubMed  CAS  Google Scholar 

  • Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B., and De Robertis, E.M., 2005, Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev 19: 1022-1027.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, K., Janda, E., Pierreux, C.E., Rytomaa, M., Schulze, A., McMahon, M., Hill, C.S., Beug, H., and Downward, J., 2000, Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14: 2610-2622.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ilasaca, M., 1998, Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol 56: 269-277.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, M., and Knaus, P., 2002, Integration of the TGF-β pathway into the cellular signalling network. Cell Signal 14: 977-988.

    Article  PubMed  CAS  Google Scholar 

  • Massagué, J., and Chen, Y.G., 2000, Controlling TGF-β signaling. Genes Dev 14: 627-644.

    PubMed  Google Scholar 

  • Mauviel, A., Chung, K.Y., Agarwal, A., Tamai, K., and Uitto, J., 1996, Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-β in fibroblasts and keratinocytes. J Biol Chem 271: 10917-10923.

    Article  PubMed  CAS  Google Scholar 

  • Mazars, A., Lallemand, F., Prunier, C., Marais, J., Ferrand, N., Pessah, M., Cherqui, G., and Atfi, A., 2001, Evidence for a role of the JNK cascade in Smad7-mediated apoptosis. J Biol Chem 276: 36797-36803.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Matsuzaki, K., Yoshida, K., urukawa, F., Tahashi, Y., Yamagata, H., Sekimoto, G., Seki, T., Matsui, H., Nishizawa, M., Fujizawa, J., and Okazaki, K., 2004, TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 23: 7416-7429.

    Article  PubMed  CAS  Google Scholar 

  • Mucsi, I., Skorecki, K.L., and Goldberg, H.J., 1996, Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β on gene expression. J Biol Chem 271: 16567-16572.

    Article  PubMed  CAS  Google Scholar 

  • Oft, M., Peli, J., Rudaz, C., Schwarz, H., Beug, H., and Reichmann, E., 1996, TGF-β and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10: 2462-2477.

    PubMed  CAS  Google Scholar 

  • Ohshima, T., and Shimotohno, K., 2003, Transforming growth factor-β-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278: 50833-50842.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H., 2001, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153-183.

    Article  PubMed  CAS  Google Scholar 

  • Pera, E.M., Ikeda, A., Eivers, E., and De Robertis, E.M., 2003, Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17: 3023-3028.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, R., Schiemann, W.P., Brooks, M.W., Lodish, H.F., and Weinberg, R.A., 2001, TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3: 708-714.

    Article  PubMed  CAS  Google Scholar 

  • Pessah, M., Marais, J., Prunier, C., Ferrand, N., Lallemand, F., Mauviel, A., and Atfi, A., 2002, c-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity. J Biol Chem 277: 29094-29100.

    Article  PubMed  CAS  Google Scholar 

  • Pessah, M., Prunier, C., Marais, J., Ferrand, N., Mazars, A., Lallemand, F., Gauthier, J.-M., and Atfi, A., 2001, c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proc Natl Acad Sci U S A 98: 6198-6203.

    Article  PubMed  CAS  Google Scholar 

  • Quan, T., He, T., Voorhees, J.J., and Fisher, G.J., 2005, Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem 280: 8079-8085.

    Article  PubMed  CAS  Google Scholar 

  • Ravanti, L., Hakkinen, L., Larjava, H., Saarialho, U., Foschi, M., Han, J., and Kähäri, V.-M., 1999, Transforming growth factor-β induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase. J Biol Chem 274: 37292-37300.

    Article  PubMed  CAS  Google Scholar 

  • Reynisdottir, I., Polyak, K., Iavarone, A., and Massagué, J., 1995, Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev 9: 1831-1845.

    PubMed  CAS  Google Scholar 

  • Roelen, B.A., Cohen, O.S., Raychowdhury, M.K., Chadee, D.N., Zhang, Y., Kyriadis, J.M., Alessandrini, A.A., and Lin, H.Y., 2003, Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-β-induced nuclear accumulation. Am J Physiol Cell Physiol 285: C823-C830.

    PubMed  CAS  Google Scholar 

  • Sanchez-Capelo, A., 2005, Dual role for TGF-β in apoptosis. Cytokine Growth Factor Rev 16: 15-34.

    Article  PubMed  CAS  Google Scholar 

  • Sano, Y., Harada, J., Tashiro, S., Gotoh-Mandeville, R., Maekawa, T., and Ishii, S., 1999, ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J Biol Chem 274: 8949-8957.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., Shegogue, D., Gore, E.A., Smith, E.A., McDermott, P.J., and Trojanowska, M., 2002, Role of p38 MAPK in transforming growth factor β stimulation of collagen production by scleroderma and healthy dermal fibroblasts. J Invest Dermatol 118: 704-711.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, A., and Graff, J.M., 2000, Calmodulin differentially modulates Smad1 and Smad2 signaling. J Biol Chem 275: 41430-41438.

    Article  PubMed  CAS  Google Scholar 

  • Shaulian, E., and Karin, M., 2002, AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131-E136.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, P.M., and Massagué, J., 2003, Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3: 807-821.

    Article  PubMed  CAS  Google Scholar 

  • Tian, F., Byfield, S.D., Parks, W.T., et al., 2004, Smad-binding defective mutant of transforming growth factor β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 64: 4523-4530.

    Article  PubMed  CAS  Google Scholar 

  • Treisman, R., 1996, Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8: 205-215.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, K., Suzuki, H., Ohashi, T., Nitta, K., Yumura, W., and Nihei, H., 2001, Involvement of MAP kinase cascades in Smad7 transcriptional regulation. Biochem Biophys Res Commun 289: 376-381.

    Article  PubMed  CAS  Google Scholar 

  • Ventura, J.J., Kennedy, N.J., Flavell, R.A., and Davis, R.J., 2004, JNK regulates autocrine expression of TGF-β. Mol Cell 15: 269-278.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., and Mauviel, A., 2002, Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118: 211-215.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., Wagner, E.F., and Mauviel, A., 2002, Distinct involvement of the Jun-N-terminal kinase and NF-κB pathways in the repression of the human COL1A2 gene by TNF-α. EMBO Rep 3: 1069-1074.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., Pessah, M., Atfi, A., and Mauviel, A., 2000, Tumor necrosis factor-α inhibits transforming growth factor-β/Smad signaling in human dermal fibroblasts via AP-1 activation. J Biol Chem 275: 30226-30231.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., Tacheau, C., Schorpp-Kistner, M., Angel, P., and Mauviel, A., 2001a, Induction of the AP-1 members c-Jun and JunB by TGF-β/Smad suppresses early Smad-driven gene activation. Oncogene 20: 2205-2211.

    Article  CAS  Google Scholar 

  • Verrecchia, F., Tacheau, C., Wagner, E.F., and Mauviel, A., 2003, A central role for the JNK pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-β-driven SMAD3/4-specific gene expression. J Biol Chem 278: 1585-1593.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., Vindevoghel, L., Lechleider, R.J., Uitto, J., Roberts, A.B., and Mauviel, A., 2001b, Smad3/AP-1 interactions control transcriptional responses to TGF-β in a promoter-specific manner. Oncogene 20: 3332-3340.

    Article  CAS  Google Scholar 

  • Wakefield, L.M., and Roberts, A.B., 2002, TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22-29.

    Article  PubMed  CAS  Google Scholar 

  • Wendling, J., Marchand, A., Mauviel, A., and Verrecchia, F., 2003, 5-fluorouracil blocks transforming growth factor-β-induced α2 type I collagen gene (COL1A2) expression in human fibroblasts via c-Jun NH2-terminal kinase/activator protein-1 activation. Mol Pharmacol 64: 707-713.

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh, A.J., and Davis, R.J., 1998; Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481-485.

    Article  PubMed  CAS  Google Scholar 

  • Wicks, S.J., Lui, S., Abdel-Wahab, N., Mason, R.M., and Chantry, A., 2000, Inactivation of smad-transforming growth factor β signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 20: 8103-8111.

    Article  PubMed  CAS  Google Scholar 

  • Wilkes, M.C., Murphy, S.J., Garamszegi, N., and Leof, E.B., 2003, Cell-type-specific activation of PAK2 by transforming growth factor β independent of Smad2 and Smad3. Mol Cell Biol 23: 8878-8889.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C., Rougier-Chapman, E.M., Frederick, J.P., Datto, M.B., Liberati, N.T., Li, J.M., and Wang, X.F., 1999, Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β. Mol Cell Biol 19: 1821-1830.

    PubMed  CAS  Google Scholar 

  • Xie, L., Law, B.K., Aakre, M.E., Edgerton, M., Shyr, Y., Bhowmick, N.A., and Moses, H.L., 2003, Transforming growth factor β–regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 5: R187-R198.

    Article  PubMed  CAS  Google Scholar 

  • Xie, L., Law, B.K., Chytil, A.M., Brown, K.A., Aakre, M.E., and Moses, H.L., 2004, Activation of the Erk pathway is required for TGF-β1 -induced EMT in vitro. Neoplasia 6: 603-610.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Nagai, S., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., Ueno, N., Nishida, E., Shibuya, H., and Matsumoto, K., 1999, XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18: 179-187.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Shirakabe, K., Shibuya, H., Irie, K., Oishi, I., Ueno, N., Taniguchi, T., Nishida, E., and Matsumoto, K., 1995, Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270: 2008-2011.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, M., Nakashima, K., Takeda, K., Ochiai, W., Takizawa, T., Ueno, M., Takizawa, M., Shibuya, H., and Taga, T., 2001, Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7. Genes Cells 6: 1091-1099.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Khosravi-Far, R., Chang, H.Y., and Baltimore, D., 1997, Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89: 1067-1076.

    Article  PubMed  CAS  Google Scholar 

  • Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., Massague, J., Mundy, G.R., and Guise, T.A., 1999, TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197-206.

    Article  PubMed  CAS  Google Scholar 

  • Yonekura, A., Osaki, M., Hirota, Y., Tsukazaki, T., Miyazaki, Y., Matsumoto, T., Ohtsuru, A., Namba, H., Shindo, H., and Yamashita, S., 1999, Transforming growth factor-β stimulates articular chondrocyte cell growth through p44/42 MAP kinase (Erk) activation. Endocr J 46: 545-553.

    PubMed  CAS  Google Scholar 

  • Yoo, J., Ghiassi, M., Jirmanova, L., Balliet, A.G., Hoffman, B., Fornace, A.J.Jr, Liebermann, D.A., Bottinger, E.P., and Roberts, A.B., 2003, Transforming growth factor-β-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278: 43001-43007.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Matsuzaki, K., Mori, S., Tahashi, Y., Yamagata, H., Furukawa, F., Seki, T., Nishizawa, M., Fujisawa, J., and Okazaki, K., 2005, Transforming growth factor-β and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166: 1029-1039.

    PubMed  CAS  Google Scholar 

  • Yu, L., Hebert, M.C., and Zhang, Y.E., 2002; TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21: 3749-3759.

    Article  PubMed  CAS  Google Scholar 

  • Yue, J., and Mulder, K.M., 2000a, Requirement of Ras/MAPK pathway activation by transforming growth factor β for transforming growth factor β 1 production in a Smad-dependent pathway. J Biol Chem 275: 35656.

    CAS  Google Scholar 

  • Yue, J., and Mulder, K.M., 2000b, Activation of the mitogen-activated protein kinase pathway by transforming growth factor-β. Methods Mol Biol 142: 125-131.

    CAS  Google Scholar 

  • Zarubin, T., and Han, J., 2005, Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11-18.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Han, J., Sells, M.A., Chernoff, J., Knaus, U.G., Ulevitch, R.J., and Bokoch, G.M., 1995, Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 270: 23934-23936.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Feng, X.-H., and Derynck, R., 1998, Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394: 909-913.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Bao, Z.Q., and Dixon, J.E., 1995, Components of a new human protein kinase signal transduction pathway. J Biol Chem 270: 12665-12669.

    PubMed  CAS  Google Scholar 

  • Zhou, G., Lee, S.C., Yao, Z., and Tan, T.H., 1999, Hematopoietic progenitor kinase 1 is a component of transforming growth factor β-induced c-Jun N-terminal kinase signaling cascade. J Biol Chem 274: 13133-13138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Javelaud, D., Mauviel, A. (2006). Interplays Between The Smad and Map Kinase Signaling Pathways. In: Dijke, P.t., Heldin, CH. (eds) Smad Signal Transduction. Proteins and Cell Regulation, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4709-6_16

Download citation

Publish with us

Policies and ethics