Skip to main content

Comparison of the Effects of Ras Effector Mutants and Ras Effectors on Transformed and Tumorigenic Growth of Human and Rodent Cells

  • Chapter
RAS Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

  • 728 Accesses

Abstract

How oncogenic Ras signaling leads to transformation of normal cells to malignant state has been under intense scrutiny over the last few decades. It is now well-appreciated that Ras induces an immensely complicated network of signaling cascades that can lead to very different outcomes depending on cell type, genetic background, phenotype assayed for, and so forth. On top of all these differences, mounting evidence suggests that there may even be differences in Ras-mediated oncogenesis between rodents, the primary model system used to study Ras oncogenesis, and humans. In this chapter, we will summarize what Ras effector pathways have been implicated in the most common and stringent phenotypes of Ras transformed cells, anchorage-independent growth using soft agar assay and in vivo xenograft tumorigenesis using immunocompromised mice, between mice and human cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adnane, J., Seijo, E., Chen, Z., Bizouarn, F., Leal, M., Sebti, S.M. and Munoz-Antonia, T. (2002) RhoB, not RhoA, represses the transcription of the transforming growth factor beta type II receptor by a mechanism involving activator protein 1. J. Biol. Chem. 277, 8500-8507.

    Article  PubMed  CAS  Google Scholar 

  • Akagi, T., Shishido, T., Murata, K. and Hanafusa, H. (2000) v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc. Natl. Acad. Sci. U.S.A. 97, 7290-7295.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, M., Schetter, C., Himly, M., Batista, O., Chang, H.W. and Vogt, P.K. (2000) The catalytic subunit of phosphoinositide 3-kinase: requirements for oncogenicity. J. Biol. Chem. 275, 6267-6275.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, M., Blazek, E. and Vogt, P.K. (2001) A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl. Acad. Sci. U.S.A. 98, 136-141.

    Article  PubMed  CAS  Google Scholar 

  • Bechade, C., Dambrine, G., David-Pfeuty, T., Esnault, E. and Calothy, G. (1988) Transformed and tumorigenic phenotypes induced by avian retroviruses containing the v-mil oncogene. J. Virol. 62, 1211-1218.

    PubMed  CAS  Google Scholar 

  • Benanti, J.A. and Galloway, D.A. (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell. Biol. 24, 2842-2852.

    Article  PubMed  CAS  Google Scholar 

  • Bjornsti, M.A. and Houghton, P.J. (2004) The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335-348.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.L. (1989) ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689.

    PubMed  CAS  Google Scholar 

  • Brognard, J., Clark, A.S., Ni, Y. and Dennis, P.A. (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986-3997.

    PubMed  CAS  Google Scholar 

  • Brose, M.S., Volpe, P., Feldman, M., Kumar, M., Rishi, I., Gerrero, R., Einhorn, E., Herlyn, M., Minna, J., Nicholson, A. et al. (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997-7000.

    PubMed  CAS  Google Scholar 

  • Calhoun, E.S., Jones, J.B., Ashfaq, R., Adsay, V., Baker, S.J., Valentine, V., Hempen, P.M., Hilgers, W., Yeo, C.J., Hruban, R.H. and Kern, S.E. (2003) BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am. J. Pathol. 163, 1255-1260.

    Article  PubMed  CAS  Google Scholar 

  • Cantley, L.C. (2002) The phosphoinositide 3-kinase pathway. Science 296, 1655-1657.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T.L., Zhao, W., Leung, S.Y., Yuen, S.T. and Cancer Genome, P. (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 63, 4878-4881.

    PubMed  CAS  Google Scholar 

  • Chang, H.W., Aoki, M., Fruman, D., Auger, K.R., Bellacosa, A., Tsichlis, P.N., Cantley, L.C., Roberts, T.M. and Vogt, P.K. (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276, 1848-1850.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J.Q., Altomare, D.A., Klein, M.A., Lee, W.C., Kruh, G.D., Lissy, N.A. and Testa, J.R. (1997) Transforming activity and mitosis-related expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis. Oncogene 14, 2793-2801.

    Article  PubMed  CAS  Google Scholar 

  • Chong, H. and Guan, K.L. (2003) Regulation of Raf through phosphorylation and N terminus–C terminus interaction. J. Biol. Chem. 278, 36269-36276.

    Article  PubMed  CAS  Google Scholar 

  • Chong, H., Vikis, H.G. and Guan, K.L. (2003) Mechanisms of regulating the Raf kinase family. Cell. Signal. 15, 463-469.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U., Westra, W.H., Ladenson, P.W. and Sidransky, D. (2003) BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst. 95, 625-627.

    Article  PubMed  CAS  Google Scholar 

  • Collisson, E.A., De, A., Suzuki, H., Gambhir, S.S. and Kolodney, M.S. (2003) Treatment of metastatic melanoma with an orally available inhibitor of the Ras-Raf-MAPK cascade. Cancer Res. 63, 5669-5673.

    PubMed  CAS  Google Scholar 

  • Coudert, B., Anthoney, A., Fiedler, W., Droz, J.P., Dieras, V., Borner, M., Smyth, J.F., Morant, R., de Vries, M.J., Roelvink, M. et al. (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Europ. J. Cancer 37, 2194-2198.

    Article  CAS  Google Scholar 

  • Courtneidge, S.A. and Heber, A. (1987) An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50, 1031-1037.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, S., Paterson, H., Kemp, P. and Marshall, C.J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841-852.

    Article  PubMed  CAS  Google Scholar 

  • Cripps, M.C., Figueredo, A.T., Oza, A.M., Taylor, M.J., Fields, A.L., Holmlund, J.T., McIntosh, L.W., Geary, R.S. and Eisenhauer, E.A. (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin. Cancer Res. 8, 2188-2192.

    PubMed  CAS  Google Scholar 

  • D’Adamo, D.R., Novick, S., Kahn, J.M., Leonardi, P. and Pellicer, A. (1997) rsc: a novel oncogene with structural and functional homology with the gene family of exchange factors for Ral. Oncogene 14, 1295-1305.

    Article  PubMed  Google Scholar 

  • Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M.J., Bottomley, W. et al. (2002) Mutations of the BRAF gene in human cancer [see comment]. Nature 417, 949-954.

    Article  PubMed  CAS  Google Scholar 

  • Dhand, R., Hara, K., Hiles, I., Bax, B., Gout, I., Panayotou, G., Fry, M.J., Yonezawa, K., Kasuga, M. and Waterfield, M.D. (1994) PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 13, 511-521.

    PubMed  CAS  Google Scholar 

  • Dong, J., Phelps, R.G., Qiao, R., Yao, S., Benard, O., Ronai, Z. and Aaronson, S.A. (2003) BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 63, 3883-3885.

    PubMed  CAS  Google Scholar 

  • Feig, L.A. (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol. 13, 419-425.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, Y. and Hanafusa, H. (1989) Phosphatidylinositol kinase activity associates with viral p60src protein. Mol. Cell. Biol. 9, 1651-1658.

    PubMed  CAS  Google Scholar 

  • Gille, H. and Downward, J. (1999) Multiple ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem. 274, 22033-22040.

    Article  PubMed  CAS  Google Scholar 

  • Goi, T., Rusanescu, G., Urano, T. and Feig, L.A. (1999) Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. Mol. Cell. Biol. 19, 1731-1741.

    PubMed  CAS  Google Scholar 

  • Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W. and Weinberg, R.A. (1999) Creation of human tumour cells with defined genetic elements. Nature 400, 464-468.

    Article  PubMed  CAS  Google Scholar 

  • Hamad, N.M., Elconin, J.H., Karnoub, A.E., Bai, W., Rich, J.N., Abraham, R.T., Der, C.J. and Counter, C.M. (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045-2057.

    Article  PubMed  CAS  Google Scholar 

  • Henriksson, M. and Luscher, B. (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109-182.

    Article  PubMed  CAS  Google Scholar 

  • Ishimura, N., Yamasawa, K., Karim Rumi, M.A., Kadowaki, Y., Ishihara, S., Amano, Y., Nio, Y., Higami, T. and Kinoshita, Y. (2003) BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett. 199, 169-173.

    Article  PubMed  CAS  Google Scholar 

  • Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., Beug, H. and Grunert, S. (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299-313.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L., Mercer, K., Greenbaum, D., Bronson, R.T., Crowley, D., Tuveson, D.A. and Jacks, T. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111-1116.

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J. and Evan, G. (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544-548.

    Article  PubMed  CAS  Google Scholar 

  • Kerkhoff, E. and Rapp, U.R. (1997) Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol. Cell. Biol. 17, 2576-2586.

    PubMed  CAS  Google Scholar 

  • Khosravi-Far, R., White, M.A., Westwick, J.K., Solski, P.A., Chrzanowska-Wodnicka, M., Van Aelst, L., Wigler, M.H. and. Der, C.J. (1996) Oncogenic Ras activation of Raf/mitogen-activated protein inase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16, 3923-3933.

    PubMed  CAS  Google Scholar 

  • Kim, I.J., Park, J.H., Kang, H.C., Shin, Y., Park, H.W., Park, H.R., Ku, J.L., Lim, S.B. and Park, J.G. (2003) Mutational analysis of BRAF and K-ras in gastric cancers: absence of BRAF mutations in gastric cancers. Hum. Genet. 114, 118-120.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Lee, C., Foxworth, A. and Waldman, T. (2004) B-Raf is dispensable for K-Ras-mediated oncogenesis in human cancer cells. Cancer Res. 64, 1932-1937.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, E.T., Nikiforova, M.N., Zhu, Z., Knauf, J.A., Nikiforov, Y.E. and Fagin, J.A. (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454-1457.

    PubMed  CAS  Google Scholar 

  • Klippel, A., Escobedo, J.A., Hirano, M. and Williams, L.T. (1994) The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14, 2675-2685.

    Article  PubMed  CAS  Google Scholar 

  • Klippel, A., Escobedo, M.A., Wachowicz, M.S., Apell, G., Brown, T.W., Giedlin, M.A., Kavanaugh, W.M. and Williams, L.T. (1998) Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol. Cell. Biol. 18, 5699-5711.

    PubMed  CAS  Google Scholar 

  • Kubota, N., Okada, S., Inada, T., Ohnishi, K. and Ohnishi, T. (2000) Wortmannin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer Lett. 161, 141-147.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.H., Lee, J.W., Soung, Y.H., Kim, H.S., Park, W.S., Kim, S.Y., Lee, J.H., Park, J.Y., Cho, Y.G., Kim, C.J. et al. (2003) BRAF and KRAS mutations in stomach cancer. Oncogene 22, 6942-6945.

    Article  PubMed  CAS  Google Scholar 

  • Lemoine, N.R., Staddon, S., Bond, J., Wyllie, F.S., Shaw, J.J. and Wynford-Thomas, D. (1990) Partial transformation of human thyroid epithelial cells by mutant Ha-ras oncogene. Oncogene 5, 1833-1837.

    PubMed  CAS  Google Scholar 

  • Levine, A.J., Momand, J. and Finlay, C.A. (1991) The p53 tumour suppressor gene. Nature 351, 453-456.

    Article  PubMed  CAS  Google Scholar 

  • Livingston, D.M. (1992) Functional analysis of the retinoblastoma gene product and of RB-SV40 T antigen complexes. Cancer Surv. 12, 153-160.

    PubMed  CAS  Google Scholar 

  • Ma, Y.Y., Wei, S.J., Lin, Y.C., Lung, J.C., Chang, T.C., Whang-Peng, J., Liu, J.M., Yang, D.M., Yang, W.K. and Shen, C.Y. (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739-2744.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, S.J., Matten, W.T., Hermann, A.S., Candia, J.M., Rong, S., Fukasawa, K., Vande Woude, G.F. and Ahn, N.G. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966-970.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, S.L., Thomas, K.R. and Capecchi, M.R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348-352.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, K., Kishida, S., Matsuura, Y., Kitayama, H., Noda, M. and Kikuchi, A. (1999) Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18, 1303-1312.

    Article  PubMed  CAS  Google Scholar 

  • Matsuguchi, T. and Kraft, A.S. (1998) Regulation of myeloid cell growth by distinct effectors of Ras. Oncogene 17, 2701-2709.

    Article  PubMed  CAS  Google Scholar 

  • McFall, A., Ulku, A., Lambert, Q.T., Kusa, A., Rogers-Graham, K. and Der, C.J. (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol. Cell. Biol. 21, 5488-5499.

    Article  PubMed  CAS  Google Scholar 

  • McFarlin, D.R. and Gould, M.N. (2003) Rat mammary carcinogenesis induced by in situ expression of constitutive Raf kinase activity is prevented by tethering Raf to the plasma membrane. Carcinogenesis 24, 1149-1153.

    Article  PubMed  CAS  Google Scholar 

  • McFarlin, D.R., Lindstrom, M.J. and Gould, M.N. (2003) Affinity with Raf is sufficient for Ras to efficiently induce rat mammary carcinomas. Carcinogenesis 24, 99-105.

    Article  PubMed  CAS  Google Scholar 

  • Milella, M., Kornblau, S.M., Estrov, Z., Carter, B.Z., Lapillonne, H., Harris, D., Konopleva, M., Zhao, S., Estey, E. and Andreeff, M. (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J. Clin. Invest. 108, 851-859.

    PubMed  CAS  Google Scholar 

  • Miller, M.J., Rioux, L., Prendergast, G.V., Cannon, S., White, M.A. and Meinkoth, J.L. (1998) Differential effects of protein kinase A on Ras effector pathways. Mol. Cell. Biol. 18, 3718-3726.

    PubMed  CAS  Google Scholar 

  • Monia, B.P., Johnston, J.F., Geiger, T., Muller, M. and Fabbro, D. (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med. 2, 668-675.

    Article  PubMed  CAS  Google Scholar 

  • Moscatello, D.K., Holgado-Madruga, M., Emlet, D.R., Montgomery, R.B. and Wong, A.J. (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem. 273, 200-206.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G.A., Graham, S.M., Morita, S., Reks, S.E., Rogers-Graham, K., Vojtek, A., Kelley, G.G. and Der, C.J. (2002) Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R- Ras2-mediated transformation. J. Biol. Chem. 277, 9966-9975.

    Article  PubMed  CAS  Google Scholar 

  • Namba, H., Nakashima, M., Hayashi, T., Hayashida, N., Maeda, S., Rogounovitch, T.I., Ohtsuru, A., Saenko, V.A., Kanematsu, T. and Yamashita, S. (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393-4397.

    Article  PubMed  CAS  Google Scholar 

  • Naoki, K., Chen, T.H., Richards, W.G., Sugarbaker, D.J. and Meyerson, M. (2002) Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 62, 7001-7003.

    PubMed  CAS  Google Scholar 

  • Ng, S.S.W., Tsao, M.S., Chow, S. and Hedley, D.W. (2000) Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res. 60, 5451-5455.

    PubMed  CAS  Google Scholar 

  • Nguyen, K.T., Wang, W.J., Chan, J.L. and Wang, L.H. (2000) Differential requirements of the MAP kinase and PI3 kinase signaling pathways in Src- versus insulin and IGF-1 receptors-induced growth and transformation of rat intestinal epithelial cells. Oncogene 19, 5385-5397.

    Article  PubMed  CAS  Google Scholar 

  • Oldham, S.M., Clark, G.J., Gangarosa, L.M., Coffey, R.J., Jr. and Der, C.J. (1996) Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 93, 6924-6928.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, C., Pinto, M., Duval, A., Brennetot, C., Domingo, E., Espin, E., Armengol, M., Yamamoto, H., Hamelin, R., Seruca, R. and Schwartz, S., Jr. (2003) BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene 22, 9192-9196.

    Article  PubMed  CAS  Google Scholar 

  • Oza, A.M., Elit, L., Swenerton, K., Faught, W., Ghatage, P., Carey, M., McIntosh, L., Dorr, A., Holmlund, J.T., Eisenhauer, E. and Study, N.C.T.G. (2003) Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol. Oncol. 89, 129-133.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri, S. and Vogel, M.L. (1987) Fibroblast transformation parameters induced by the avian v-mil oncogene. J. Virol. 61, 1717-1721.

    PubMed  CAS  Google Scholar 

  • Peyssonnaux, C., Provot, S., Felder-Schmittbuhl, M.P., Calothy, G. and Eychene, A. (2000) Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Mol. Cell. Biol. 20, 7068-7079.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, C.A., Samuels, M.L., Bosch, E. and McMahon, M. (1995) Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15, 6430-6442.

    PubMed  CAS  Google Scholar 

  • Rajagopalan, H., Bardelli, A., Lengauer, C., Kinzler, K.W., Vogelstein, B. and Velculescu, V.E. (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934.

    Article  PubMed  CAS  Google Scholar 

  • Ramocki, M.B., White, M.A., Konieczny, S.F. and Taparowsky, E.J. (1998) A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis. J. Biol. Chem. 273, 17696-17701.

    Article  PubMed  CAS  Google Scholar 

  • Rich, J.N., Guo, C., McLendon, R.E., Bigner, D.D., Wang, X.F. and Counter, C.M. (2001) A genetically tractable model of human glioma formation. Cancer Res. 61, 3556-3560.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A. and Downward, J. (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457-467.

    Article  PubMed  CAS  Google Scholar 

  • Rosario, M., Paterson, H.F. and Marshall, C.J. (2001) Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol. Cell. Biol. 21, 3750-3762.

    Article  PubMed  CAS  Google Scholar 

  • Samuels, M.L., Weber, M.J., Bishop, J.M. and McMahon, M. (1993) Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol. Cell. Biol. 13, 6241-6252.

    PubMed  CAS  Google Scholar 

  • Samuels, Y. and Velculescu, V.E. (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3, 1221-1224.

    Article  PubMed  CAS  Google Scholar 

  • Sebolt-Leopold, J.S., Dudley, D.T., Herrera, R., Van Becelaere, K., Wiland, A., Gowan, R.C., Tecle, H., Barrett, S.D., Bridges, A., Przybranowski, S. et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 5, 810-816.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. and Lowe, S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.

    Article  PubMed  CAS  Google Scholar 

  • Shay, J.W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-791.

    Article  PubMed  CAS  Google Scholar 

  • Shayesteh, L., Lu, Y., Kuo, W.L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G.B. and Gray, J.W. (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99-102.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, H., Shao, J. and DuBois, R.N. (2001) Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J. Biol. Chem. 276, 14498-14504.

    PubMed  CAS  Google Scholar 

  • Shields, J.M., Pruitt, K., McFall, A., Shaub, A. and Der, C.J. (2000) Understanding Ras: ‘it ain’t over’ til it’s over’. Trends Cell Biol. 10, 147-154.

    Article  PubMed  CAS  Google Scholar 

  • Smets, L.A. (1980) Cell transformation as a model for tumor induction and neoplastic growth. Biochim. Biophys. Acta 605, 93-111.

    PubMed  CAS  Google Scholar 

  • Stanton, V.P., Nichols, D.W., Laudano, A.P. and Cooper, G.M. (1989) Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell. Biol. 9, 639-647.

    PubMed  CAS  Google Scholar 

  • Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. and Hancock, J.F. (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463-1467.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M., Wang, G., Paciga, J.E., Feldman, R.I., Yuan, Z.Q., Ma, X.L., Shelley, S.A., Jove, R., Tsichlis, P.N., Nicosia, S.V. and Cheng, J.Q. (2001) AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol. 159, 431-437.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y., Yu, J. and Field, J. (1999) Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol. Cell. Biol. 19, 1881-1891.

    PubMed  CAS  Google Scholar 

  • Tolcher, A.W., Reyno, L., Venner, P.M., Ernst, S.D., Moore, M., Geary, R.S., Chi, K., Hall, S., Walsh, W., Dorr, A. and Eisenhauer, E. (2002) A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 8, 2530-2535.

    PubMed  CAS  Google Scholar 

  • Toretsky, J.A., Thakar, M., Eskenazi, A.E. and Frantz, C.N. (1999) Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing’s sarcoma family of tumors. Cancer Res. 59, 5745-5750.

    PubMed  CAS  Google Scholar 

  • Urano, T., Emkey, R. and Feig, L.A. (1996) Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816.

    PubMed  CAS  Google Scholar 

  • Varticovski, L., Daley, G.Q., Jackson, P., Baltimore, D. and Cantley, L.C. (1991) Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. Mol. Cell. Biol. 11, 1107-1113.

    PubMed  CAS  Google Scholar 

  • Vivanco, I. and Sawyers, C.L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Cunningham, J.M., Winters, J.L., Guenther, J.C., French, A.J., Boardman, L.A., Burgart, L.J., McDonnell, S.K., Schaid, D.J. and Thibodeau, S.N. (2003) BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 63, 5209-5212.

    PubMed  CAS  Google Scholar 

  • Ward, Y., Wang, W., Woodhouse, E., Linnoila, I., Liotta, L. and Kelly, K. (2001) Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol. Cell. Biol. 21, 5958-5969.

    Article  PubMed  CAS  Google Scholar 

  • Wasylyk, C., Wasylyk, B., Heidecker, G., Huleihel, M. and Rapp, U.R. (1989) Expression of raf oncogenes activates the PEA1 transcription factor motif. Mol. Cell. Biol. 9, 2247-2250.

    PubMed  CAS  Google Scholar 

  • Webb, C.P., Van Aelst, L., Wigler, M.H. and Woude, G.F. (1998) Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl. Acad. Sci. U.S.A. 95, 8773-8778.

    Article  PubMed  CAS  Google Scholar 

  • Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., Springer, C.J. and Marais, R. (2004) V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338-2342.

    Article  PubMed  CAS  Google Scholar 

  • Whang, Y.E., Wu, X. and Sawyers, C.L. (1998) Identification of a pseudogene that can masquerade as a mutant allele of the PTEN/MMAC1 tumor suppressor gene. J. Natl. Cancer Inst. 90, 859-861.

    Article  PubMed  CAS  Google Scholar 

  • White, M.A., Nicolette, C., Minden, A., Polverino, A., Van Aelst, L., Karin, M. and Wigler, M.H. (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533-541.

    Article  PubMed  CAS  Google Scholar 

  • White, M.A., Vale, T., Camonis, J.H., Schaefer, E. and Wigler, M.H. (1996) A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271, 16439-16442.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, M., Kaplan, D.R., Schaffhausen, B., Cantley, L. and Roberts, T.M. (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239-242.

    Article  PubMed  CAS  Google Scholar 

  • Wolthuis, R.M., de Ruiter, N.D., Cool, R.H. and Bos, J.L. (1997) Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 16, 6748-6761.

    Article  PubMed  CAS  Google Scholar 

  • Wolthuis, R.M. and Bos, J.L. (1999) Ras caught in another affair: the exchange factors for Ral. Curr. Opin. Genet. Dev. 9, 112-117.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Senechal, K., Neshat, M.S., Whang, Y.E. and Sawyers, C.L. (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 15587-15591.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J.J., Kang, J.S. and Krauss, R.S. (1998) Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol. Cell. Biol. 18, 2586-2595.

    PubMed  CAS  Google Scholar 

  • Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W.C., Stukenberg, P.T., Shenolikar, S., Uchida, T. et al. (2004) A signalling pathway controlling c-Myc degredation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308-318.

    Article  PubMed  CAS  Google Scholar 

  • Yuen, S.T., Davies, H., Chan, T.L., Ho, J.W., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Tsui, W.W., Chan, A.S. et al. (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 62, 6451-6455.

    PubMed  CAS  Google Scholar 

  • Zhao, W., Chan, T.L., Chu, K.M., Chan, A.S., Stratton, M.R., Yuen, S.T. and Leung, S.Y. (2004) Mutations of BRAF and KRAS in gastric cancer and their association with microsatellite instability. Int. J. Cancer 108, 167-169.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lim, KH., Counter, C.M. (2006). Comparison of the Effects of Ras Effector Mutants and Ras Effectors on Transformed and Tumorigenic Growth of Human and Rodent Cells. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_11

Download citation

Publish with us

Policies and ethics