Skip to main content

NANOPARTICLES IN OXIDE GLASSES: MAGNETIC RESONANCE STUDIES

  • Conference paper
Smart Materials for Ranging Systems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 226))

Abstract

We overview the application of the electron magnetic resonance spectroscopy assisted with computer simulations to a new phenomenon observed in annealed iron-containing glasses, viz. the superparamagnetic resonance arising from magnetically ordered nanoparticles. The characteristics of the nanoparticle size and shape distribution in glass are obtained by numerical simulation of the resonance spectra. This phenomenon provides a basis of a novel method of morphological analysis of the magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Néel, 1949, Ann. Geophys. 5 99.

    Google Scholar 

  2. V.K. Sharma and A. Baiker, 1981, J. Chem. Phys. 75 5596.

    Article  ADS  Google Scholar 

  3. J. Dubowik and J. Baszynski, 1986, J. Magn. Magn. Mater. 59 161.

    Article  ADS  Google Scholar 

  4. Yu. L. Raikher and V.I. Stepanov, 1995, J. Magn. Magn. Mater. 149 34.

    Article  ADS  Google Scholar 

  5. R. Berger, J.-C. Bissey, J. Kliava and B. Soulard, 1997, J. Magn. Magn. Mater. 167 129.

    Article  ADS  Google Scholar 

  6. R. Berger, J. Kliava, J.-C. Bissey and V. Baïetto, 1998, J. Phys. : Condens. Matter 10 8559.

    Article  ADS  Google Scholar 

  7. R.D. Sánchez, M.A. López-Quintela, J. Rivas, A. González-Penedo, A.J. García-Bastida, C.A. Ramos, R.D. Zysler and S. Ribeiro Guevara, 1999, J. Phys : Condens. Matter 11 5643.

    Article  ADS  Google Scholar 

  8. J. Kliava and R. Berger, 1999, J. Magn. Magn. Mat. 205 328.

    Article  ADS  Google Scholar 

  9. R. Berger, J. Kliava, J-C. Bissey and V. Baïetto, 2000, J. Appl. Phys. 87 7389.

    Article  ADS  Google Scholar 

  10. L.M. Lacava, B.M. Lacava, R.B. Azevedo, Z.G.M. Lacava, N. Buske, A.L. Tronconi and P.C. Morais, 2001, J. Magn. Magn. Mat. 225 79.

    Article  ADS  Google Scholar 

  11. R. Berger, J-C. Bissey, J. Kliava, H. Daubric and C. Estournès, 2001, J. Magn. Magn. Mat. 234 535.

    Article  ADS  Google Scholar 

  12. L. Dormann, D Fiorani and E. Tronc, 1997, Adv. Chem. Phys. 98 283.

    Article  Google Scholar 

  13. G. V. Skrotskii and L. V. Kurbatov, 1966, Ferromagnetic Resonance, Ed. V Vonsovski, Oxford, Pergamon.

    Google Scholar 

  14. M. Respaud, M. Goiran, F. Yang, J.M. Broto, T. Ould Ely, C. Amiens, B. Chaudret and S. Askenazy, 1998, Physica B 246-247 580.

    Article  ADS  Google Scholar 

  15. M. Respaud, M. Goiran, J.M. Broto, F. H. Yang, T. Ould Ely, C. Amiens and B. Chaudret, 1999, Phys. Rev. B 59 R3934.

    ADS  Google Scholar 

  16. J. Smit and H. G. Beljers, 1955, Philips Res. Rep. 10 113.

    Google Scholar 

  17. L. Baselgia, M. Warden, F. Waldern, S. L. Hutton, J. E. Drumheller, Y. Q. He, P. E. Wigen, M. Marysko, 1988, Phys. Rev. B 38 2237.

    ADS  Google Scholar 

  18. R.S. de Biasi and T.C. Devezas, 1978, J. Appl. Phys. 49 2466.

    Article  ADS  Google Scholar 

  19. Yu.L. Raikher and V.I. Stepanov, 1992, Sov. Phys. JETP 75 764.

    Google Scholar 

  20. G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, C. Sangregorio, J. L. Stanger, G. Concas and G. Spano, 1998, Chem. Mater. 10 495.

    Article  Google Scholar 

  21. J. Zarzycki, J. Appl. Crystallogr., 1974, 7 200.

    Article  Google Scholar 

  22. J.-C. Bacri, F. Boué, V. Cabuil and R. Perzynski, 1993, Colloids and Surfaces A 80 11.

    Google Scholar 

  23. J. Popplewell and L. Sakhnini, 1995, J. Magn. Magn. Mater. 149 72.

    Article  ADS  Google Scholar 

  24. J.C. Bacri, R. Perzynski, D. Salin, V. Cabuil and R. Massart, 1986, J. Magn. Magn. Mater. 62 36.

    Article  ADS  Google Scholar 

  25. R.V. Upadhyay, G.M. Sutariya and R.V. Mehta, 1993, J. Magn. Magn. Mater. 123 262.

    Article  ADS  Google Scholar 

  26. C. Estournès, T. Lutz, J. Happich, P. Quaranta, P. Wissler and J.L.Guille, 1997, J. Magn. Magn. Mater. 173 83.

    Article  ADS  Google Scholar 

  27. M. Jamet, V. Dupuis, P. Mélinon, G. Guiraud, A. Pérez, W. Wernsdorfer, A. Traverse and B. Baguenard, 2000, Phys. Rev. B 62 493.

    ADS  Google Scholar 

  28. J. Zarzycki and F. Naudin, 1967, Phys. and Chem. Glasses 8 11.

    Google Scholar 

  29. G. Le Caër, R.A. Brand and K. Dehghan, 1985, J. Physique, Coll. 46 C8-169.

    Article  Google Scholar 

  30. M. Maurer, 1986, Phys. Rev. B34 8996.

    ADS  Google Scholar 

  31. G. Le Caër, J.M. Cadogan, R.A. Brand, J.M. Dubois and H.J. Güntherodt, 1984, J. Phys. F : Met. Phys. 14 L73.

    Article  ADS  Google Scholar 

  32. F. Gazeau, J.C. Bacri, F. Gendron, R. Perzynski, Yu.L. Raikher, V.I. Stepanov and E. Dubois, 1998, J. Magn. Magn. Mater. 186 175.

    Article  ADS  Google Scholar 

  33. R. Berger, J-C. Bissey and J. Kliava, 2000, J. Phys.: Condens. Matter. 12 9347.

    Article  ADS  Google Scholar 

  34. E. Rezlescu, N. Rezlescu and M.L. Craus, 1997, J. Phys. IV, France 7 553.

    Article  Google Scholar 

  35. E. Schmidbauer and R. Keller, 1996, J. Magn. Magn. Mater. 152 99.

    Article  ADS  Google Scholar 

  36. J. Kliava, 1986, Phys. Status Sol.(b) 134 411.

    Article  ADS  Google Scholar 

  37. J. Kliava, 1988, EPR Spectroscopy of Disordered Solids (EPR spektroskopia neuporiadochennyh tverdyh tel), Riga, “Zinàtne”.

    Google Scholar 

  38. R. Zysler, D. Fiorani, J.L. Dormann and A.M. Testa, 1994, J. Magn. Magn. Mater. 133 71.

    Article  ADS  Google Scholar 

  39. M.M. Ibrahim, G. Edwards, M.S. Seerha, B. Ganguly and G. P. Huffman, 1994, J. Appl. Phys. 75 5873.

    Article  ADS  Google Scholar 

  40. K. Nagata and A. Ishihara, 1992, J. Magn. Magn. Mater. 104-107 1571.

    Article  ADS  Google Scholar 

  41. K. Parekh, R.V. Upadhyay and R.V. Mehta, 2000, J. Appl. Phys. 88 2799.

    Article  ADS  Google Scholar 

  42. Yu. A. Koksharov, S.P. Gubin, I.D. Kosobudsky, G.Yu. Yurkov, D.A. Pankratov, L.A. Ponomarenko, M.G. Mikheev, M. Beltran, Y. Khodorkovsky and A.M. Tishin, 2000, Phys. Rev. B 63 12407.

    Google Scholar 

  43. H. K. Lachowicz, A. Sienkiewicz, P. Gierlowski and A. Slawska-Waniewska, 2000, J. Appl. Phys. 88 368.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kliava, J., Berger, R. (2006). NANOPARTICLES IN OXIDE GLASSES: MAGNETIC RESONANCE STUDIES. In: Franse, J., Eremenko, V., Sirenko, V. (eds) Smart Materials for Ranging Systems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 226. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4646-4_2

Download citation

Publish with us

Policies and ethics