Skip to main content

CHEMILUMINESCENCE-BASED SENSORS

  • Conference paper
Optical Chemical Sensors

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 224))

Abstract

Luminescence is the emission of light from an electronically excited compound returning to the ground state. The source of excitation energy serves as a basis for a classification of the various types of luminescence. Chemiluminescence occurs in the course of some chemical reactions when an electronically excited state is generated. Bioluminescence is a special case of chemiluminescence occurring in some living organisms and involves a protein, generally an enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Roswell D.F., White E.H., The chemiluminescence of luminol and related hydrazides, Methods Enzymol. 1978; 57: 409–423.

    Article  CAS  Google Scholar 

  2. White E. H., Zafiriou O., Kägi H. H.,. Hill J.H.M., Chemiluminescence of luminol: the chemical reaction, J. Am. Chem Soc. 1964; 86: 940–941.

    Article  CAS  Google Scholar 

  3. White E.H., Bursey M.M., Chemiluminescence of luminol and related hydrazides. The light emission step, J. Am. Chem. Soc. 1964; 86: 941–942.

    Article  CAS  Google Scholar 

  4. Yamazaki I., Yokota K.N., Oxidation states of peroxidase, Mol.Cell. Biochem. 1973; 2: 39–52.

    Article  CAS  Google Scholar 

  5. Cormier M.J.,Prichard P.M., An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques, J. Biol. Chem. 1968; 243: 4706–4714.

    CAS  Google Scholar 

  6. Kuwana T., Electro-oxidation followed by light emission, J. Electroanal.Chem. 1963; 6: 164–167.

    Article  CAS  Google Scholar 

  7. Epstein B., Kuwa.na T., Electrooxidation of phthalhydrazides, J. Electroanal. Chem. 1967; 15:389–397.

    Article  CAS  Google Scholar 

  8. Thorpe G.H.G., Kricka L.J., Carter T.J.N., Chemiluminescence, in Clinical and Biochemical Luminescence, L. J. Kricka and T.J.N. Carter, eds. Marcel Dekker, New York, 1982, 21–42.

    Google Scholar 

  9. Mohan A.G., Chemi- and Bioluminescence, J.G. Burr, ed. Marcel Dekker, New York, 1985, 245–258.

    Google Scholar 

  10. De Luca M., Firefly luciferase, Advances Enzymol. 1976; 44: 37–68.

    Google Scholar 

  11. De Luca M., McElroy W. D., Purification and properties of firefly luciferase, Methods Enzymol, 1978; 57: 3–15.

    Article  Google Scholar 

  12. McElroy W.D., De Luca M., Firefly bioluminescence, in Chemi- and Bioluminescence, JG Burr, ed., Marcel Dekker, New York, 1985, 387–399.

    Google Scholar 

  13. Ugarova N.N., Luciferase of Luciola mingrelica fireflies. Kinetics and regulation mechanism, J. Biolumin. Chemilumin. 1989; 4: 406–418.

    Article  CAS  Google Scholar 

  14. Brovko L.Y., Gandelman O.A., Polenova T.E., Ugarova N.N. Kinetics of bioluminescence in the firefly luciferin-luciferase system. Biochemistry (Russia) 1994; 59(2): 195–201.

    Google Scholar 

  15. Gandelman O.A., Brovko L.Y., Chikishev A.Y., Shkurinov A.P., Ugarova N.N., Investigation of the interaction between firefly luciferase and oxyluciferin or its analogues by steady state and subnanosecond time-resolved fluorescence, J. Photochem. Photobiol. B :Biol, 1994; 22: 203–209.

    Article  CAS  Google Scholar 

  16. Shimomura O., Johnson F.H., Saiga Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea, J. Cell Comp. Physiol, 1962; 59: 223–239.

    Article  CAS  Google Scholar 

  17. Seliger H.H., McElroy W.D., Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys. 1960; 88: 136–141.

    Article  CAS  Google Scholar 

  18. Gonzalus-Miguel A., Meighen E.A., Ziegler M.M., Nicoli M., Nealson K.H., Hastings J.W., Purification and properties of bacterial luciferases, J. Biol. Chem. 1972; 247: 398–404.

    Google Scholar 

  19. Hastings J.W., Baldwin T.O., Nicoli M.Z., Bacterial luciferase: assay, purification and properties, Methods Enzymol. 1978; 57: 135–152.

    Article  CAS  Google Scholar 

  20. Nealson K.H., Isolation, identification, and manipulation of luminous bacteria, Methods Enzymol. 1978; 57: 153–166.

    Article  CAS  Google Scholar 

  21. Puget K., Michelson A.M., Studies in bioluminescence. VII. bacterial NADH: Flavin mononucleotide oxidoreductase, Biochimie, 1972; 54: 1197–1204.

    Article  CAS  Google Scholar 

  22. Gerlo E., Charlier J., Identification of NADH-specific and NADPH-specific FMN reductase in Beneckea harveyi, Eur. J. Biochem. 1975; 57: 461–467.

    Article  CAS  Google Scholar 

  23. Freeman T.M., Seitz W.R., Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction, Anal. Chem. 1978; 50(9): 1242–1246.

    Article  CAS  Google Scholar 

  24. Blum L.J., Gautier S.M., Coulet P.R., Luminescence fiber-optic biosensor, Anal. Lett. 1988; 21(5): 717–726.

    CAS  Google Scholar 

  25. Berger A., Blum L.J., Enhancement of the response of a lactate oxidase/peroxidase-based fiberoptic sensor by compartimentalization of the enzyme layer, Enzyme Microb. Technol,., 1994; 16: 979–984.

    Article  CAS  Google Scholar 

  26. Michel P.E., Gautier S.M., Blum L.J., Effect of compartmentalization of the sensing layer on the sensitivity of a multienzyme-based bioluminescent sensor for L-lactate, Anal. Lett. 1996; 29 (7): 1139–1155.

    CAS  Google Scholar 

  27. Michel P.E., Gautier S.M., Blum L.J., A high-performance bioluminescent trienzymatic sensor for D-sorbitol based on a novel approach of the sensing layer design”. Enzyme Microb.Technol. 1997; 21(2): 108–116.

    Article  CAS  Google Scholar 

  28. Gautier S.M., Blum L.J., Coulet P.R., Bioluminescence-based fiber-optic sensor with entrapped co-reactant: an approach for designing a self-contained biosensor, Anal. Chim. Acta, 1991; 243: 149–156.

    Article  CAS  Google Scholar 

  29. Gautier S.M., Blum L.J., Coulet P.R., Cofactor-containing bioluminescent fiber-optic sensor: new developments with poly(vinyl) alcohol matrices, Anal. Chim. Acta, 1991; 255: 253–258.

    Article  CAS  Google Scholar 

  30. Gautier S.M., Michel P.E., Blum L.J., Reagentless bioluminescent sensor for NADH, Anal. Lett., 1994; 27(11): 2055–2069.

    CAS  Google Scholar 

  31. Michel P.E., Gautier S.M., Blum LJ., Luciferin incorporation in the structure of acrylic microspheres with subsequent confinement in a polymeric film : a new method to develop a controlled release- based biosensor for ATP, ADP and AMP, Talanta 1998; 47: 167–181.

    Article  Google Scholar 

  32. Gautier S.M., Blum L.J., Coulet P.R., Alternate determination of ATP and NADH with a single bioluminescence-based fiber-optic sensor, Sens. Actuators 1990; Bl: 580–584.

    Google Scholar 

  33. Gautier S.M., Blum L.J., Coulet P.R., Multifunction fibre-optic sensor for the selected bioluminescent flow determination of ATP or NADH, Anal. Chim. Acta 1990; 235: 243–253.

    Article  CAS  Google Scholar 

  34. Gautier S.M., Blum L.J., Coulet P.R., Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, éthanol and oxaloacetate, J. Biolumin. Chemilumin. 1990; 5: 57–63.

    Article  CAS  Google Scholar 

  35. Gautier S.M., Blum L.J., Coulet P.R., Dehydrogenase activity monitoring by flow injection analysis combined with luminescence based fibre-optic sensors, Anal. Chim. Acta 1992; 266: 331–338.

    Article  CAS  Google Scholar 

  36. Gautier S.M., Blum L.J., Coulet P. R., Fibre-optic sensor with co-immobilised bacterial bioluminescence enzymes, Biosensors 1989; 4: 181–194.

    Article  CAS  Google Scholar 

  37. Blum L.J., Gautier S.M., Coulet P.R., Highly stable bioluminescence-based fiber-optic sensor using immobilized enzymes from Vibrio harveyi, Anal. Lett. 1989; 22(10): 2211–2222.

    CAS  Google Scholar 

  38. Blum L.J., Gautier S.M., Coulet P.R., Continuous flow bioluminescent assay of NADH using a fibre-optic sensor, Anal. Chim. Acta 1989; 226: 331–336.

    Article  CAS  Google Scholar 

  39. Lapp H., Spohn U., Janasek D., An enzymatic chemiluminescence optrode for choline detection under flow injection conditions, Anal. Lett. 1996; 29: 1–17.

    CAS  Google Scholar 

  40. Tsafack V.C., Marquette C.A., Pizzolato F., Blum L.J., Chemiluminescent choline biosensor using histidine-modified peroxidase immobilized on metal-chelate substituted beads and choline oxidase immobilized on anion-exchanger beads co-entrapped in a photocrosslinkable polymer, Biosens. Bioelectron, 2000; 15: 125–133.

    Article  CAS  Google Scholar 

  41. Xie X., Suleiman A.A., Guilbault G.G., Yang Z., Sun Z., Flow-injection determination of ethanol by fiber-optic chemiluminesecnce measurement, Anal. Chim. Acta 1992; 266: 325–329.

    Article  CAS  Google Scholar 

  42. Abdel-Latif M.S., Guilbault G.G., Peroxide optrode based on micellar-mediated chemiluminescence reaction of luminol, Anal. Chim. Acta 1989; 221: 11–17.

    Article  CAS  Google Scholar 

  43. Zhou X., Arnold M.A., Internal enzyme fiber-optic biosensors for hydrogen peroxide and glucose, Anal. Chim. Acta 1995; 304: 147–156.

    Article  CAS  Google Scholar 

  44. Blum L.J., Chemiluminescent flow injection analysis of glucose in drinks with a bi-enzyme fiber optic biosensor, Enzyme Microb.Technol. 1993; 15: 407–411.

    Article  CAS  Google Scholar 

  45. Blankenstein G., Preuschoff F., Spohn U., Mohr K.H., Kula M.R., Determination of L-glutamate and L-glutamine by flow-injection analysis and chemiluminescence detection: comparison of an enzyme column and enzyme membrane sensor, Anal. Chim. Acta 1993; 271:231–237.

    Article  CAS  Google Scholar 

  46. Preuschoff F., Spohn U., Blankenstein G., Mohr G., Kula M.R., Chemiluminometric hydrogen peroxide sensor for flow injection analysis, Fresenius J. Anal. Chem., 1993; 346: 924–929.

    Article  CAS  Google Scholar 

  47. Berger-Collaudin A., Blum L. J., Enhanced luminescent response of a fiberoptic sensor for H2O2 by a high-salt concentration medium, Sens. Actuators B 1997; 38–39: 189–194.

    Article  Google Scholar 

  48. Hlavay J., Haemmerli S.D., Guilbault G.G., Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction, Biosens. Bioelectron 1994; 9: 189–195.

    Article  CAS  Google Scholar 

  49. Berger A., Blum L. J., Enhancement of the response of a lactate oxidase/peroxidase-based fiberoptic sensor by compartmentalization of the enzyme layer, Enzyme Microb. Technol. 1994; 16: 979–984.

    Article  CAS  Google Scholar 

  50. Preuschoff F., Spohn U., Weber E., Unverhau K., Mohr K.H., Chemiluminometric L-lysine determination with immobilized lysine oxidase by flow-injection analysis, Anal. Chim. Acta 1993; 280: 185–189.

    Article  CAS  Google Scholar 

  51. Spohn U., Preuschoff F., Blankenstein G., Janasek D., Kula M.R., Hacker A., Chemiluminometric enzyme sensors for flow injection analysis, Anal.Chim. Acta 1995; 303:109–120.

    Article  CAS  Google Scholar 

  52. Hlavay J., Guilbault G.G., Determination of sulphite by use of a fiber-optic biosensor based on a chemiluminescent reaction, Anal. Chim. Acta 1994; 299: 91–96.

    Article  CAS  Google Scholar 

  53. Marquette C.A., Blum L.J., Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta 1999; 381: 1–10.

    Article  CAS  Google Scholar 

  54. Marquette C.A., Blum L.J., Electrochemiluminescence of luminol for 2,4-D optical immunosensing in a flow injection system, Sens. Actuators B 1998; 51: 100–106.

    Article  Google Scholar 

  55. Tsafack V. C., Marquette C. A., Leca B., Blum L. J., An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis, Analyst 2000; 125: 151–155.

    Article  CAS  ADS  Google Scholar 

  56. Marquette C. A., Raveau S., Blum L. J., Luminol electrochemiluminescence-based biosensor for total cholesterol determination in natural samples, Anal. Lett. 2000; 33(9): 1779–1796.

    Article  CAS  Google Scholar 

  57. Marquette C.A., Blum L.J., Self-containing reactant Biochips for the electrochemiluminescent determination of glucose, lactate and choline, Sens. Actuators 5 2003; 90: 112–117.

    Google Scholar 

  58. Marquette C.A., Degiuli A., Blum L.J., Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate, Biosens. Bioelectron. 2003; 19: 433–439.

    Article  CAS  Google Scholar 

  59. Marquette C.A., Thomas D., Blum L.J., Design of luminescent biochips based on enzyme, antibody or DNA composite layer, Anal. Bioanal. Chem. 2003; 377: 922–928

    Article  CAS  Google Scholar 

  60. Marquette C.A., Blum L.J., Direct immobilisation in PDMS for DNA, protein and enzyme fluidic biochips, Anal. Chim. Acta 2004; 506: 127–132.

    Article  CAS  Google Scholar 

  61. Marquette C.A., Blum L.J., Conducting elastomer surface texturing: a path to electrode spotting. Application to the biochip production, Biosens. Bioelectron, 2004, 20 (2): 197–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Blum, L.J., Marquette, C.A. (2006). CHEMILUMINESCENCE-BASED SENSORS. In: Baldini, F., Chester, A., Homola, J., Martellucci, S. (eds) Optical Chemical Sensors. NATO Science Series II: Mathematics, Physics and Chemistry, vol 224. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4611-1_8

Download citation

Publish with us

Policies and ethics