Skip to main content

EXPERIMENTAL FLUTTER INVESTIGATIONS OF AN ANNULAR COMPRESSOR CASCADE: INFLUENCE OF REDUCED FREQUENCY ON STABILITY

  • Conference paper
UNSTEADY AERODYNAMICS, AEROACOUSTICS AND AEROELASTICITY OF TURBOMACHINES

Abstract

Due to the trend of increasing power and reducing weight, the fan and compressor bladings of turbomachinery might be more sensitive to flutter, which must strictly be avoided already in the design process. In order to increase our understanding of the flutter phenomena for fan and compressor cascades, aeroelastic investigations are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Belz, J., Hennings, H. (2000). Aerodynamic Stability Investigations of an Annular Compressor Cascade Based on Unsteady Pressure Measurements, Proceedings of the 9th International Symposium on Unsteady Aerodynamics, Aeroacustics and Aeroelasticity of Turbomachines (ISUAAAT), 4–8 Sept 2000, Lyon, France, pp. 280–295

    Google Scholar 

  • Bölcs, A. (1983). A Test Facility for the Investigation of Steady and Unsteady Transonic Flows in Annular Cascades, ASME Paper 83-GT-34

    Google Scholar 

  • Buffum, D.H., Capece, V.R., King, A.J., and El-Aini, Y.M. (1998). Oscillating Cascade Aerodynamics at Large Mean Incidence, ASME Journal of Turbomachinery, Vol. 120, pp. 122–130

    Google Scholar 

  • Carta, F.O. (1982). An Experimental Investigation of Gapwise Periodicity and Unsteady Aerodynamic Response in an Oscillating Cascade. I – Experimental and Theoretical Results, NASA Contractor Rep., CR-3513

    Google Scholar 

  • Carstens, V and Schmitt, S. (1999). Comparison of Theoretical and Experimental Data for an Oscillating Transonic Compressor Cascade, ASME Paper 99-GT-408

    Google Scholar 

  • Hennings, H. and Belz, J. (1999). Experimental Investigation of the Aerodynamic Stability of an Annular Compressor Cascade Performing Tuned Pitching Oscillations in Transonic Flow, ASME Paper 99-GT-407

    Google Scholar 

  • Kahl, G. and Hennings, H. (2000). Computational Investigation of an Oscillating Compressor Cascade Experiment, Proceedings of the 9th International Symposium on Unsteady Aerodynamics, Aeroacustics and Aeroelasticity of Turbomachines (ISUAAAT), 4–8 Sept 2000, Lyon, France, pp. 819–829

    Google Scholar 

  • Körbächer, H. and Bölcs, A. (1996). Steady-State and Time-Dependent Experimental Results of a NACA-3506 Cascade in an Annular Channel, ASME Paper 96-GT-334

    Google Scholar 

  • Körbächer, H. (1996). Experimental Investigation of the Unsteady Flow in an Oscillating Annular Compressor Cascade, Ph. D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland

    Google Scholar 

  • Lepicovsky, J., MacFarland, E.R., Capece, V.R., and Hayden, J. (2002). Unsteady Pressures in a Transonic Fan Cascade Due To a Single Oscillating Airfoil, ASME Paper GT-2002-30312

    Google Scholar 

  • Nowinski, M., and Panovsky, J. (1998). Flutter Mechanisms in Low Pressure Turbine Blades, ASME Paper 98-GT-573

    Google Scholar 

  • Rottmeier, F (2003). Experimental Investigation of a Vibrating Axial Turbine Cascade in Presence of Upstream Generated Aerodynamic Guests, Ph. D. Thesis, école Polytechnique Fédérale de Lausanne, Switzerland

    Google Scholar 

  • Széchényi, E., and Girault, J.P. (1980). A Study of Compressor Blade Stall Flutter in a Straight Cascade Wind-tunnel, Symposium on Aeroelasticity in Turbomachines, Lausanne, Switzerland

    Google Scholar 

  • Whitehead, D.S. (1987). Classical Two-Dimensional Methods, AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines, AGARD-AG-298, Vol. 1, Chapter 3: Unsteady Turbo-machinery Aerodynamics, M.F. Platzer and F.O. Carta, eds.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Belz, J., Hennings, H. (2006). EXPERIMENTAL FLUTTER INVESTIGATIONS OF AN ANNULAR COMPRESSOR CASCADE: INFLUENCE OF REDUCED FREQUENCY ON STABILITY. In: Hall, K.C., Kielb, R.E., Thomas, J.P. (eds) UNSTEADY AERODYNAMICS, AEROACOUSTICS AND AEROELASTICITY OF TURBOMACHINES. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4605-7_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4605-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4267-6

  • Online ISBN: 978-1-4020-4605-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics