Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. S. Schulze, Silicon bonding in microsystem technology. NEXUS Workshop IMSAS; 1995.

    Google Scholar 

  2. S. Farrens, Low temperature wafer bonding. Proceedings of Electrochem. Soc. DV 97–36; and original materials of dr Shari Farrens from the University of California-Davis, Electrical and Computer Eng. Dept., Davis, Ca. 956/6, USA.

    Google Scholar 

  3. S. Bengston, Semiconductor wafer bonding: A review of interfacial properties and applications. Journal of ElectronicMaterials, 21(8), 1992, 841–862.

    Google Scholar 

  4. W. Kern, D.A. Puotinen, RCA Review, 31(187), 1970.

    Google Scholar 

  5. Ch. Harendt, H.G. Graf, E. Penteker, B.H. Flinger, Wafer bonding: Investigation and in situ observation of the bond process. Sensors and Actuators A, 21-23, 1990, 927–930.

    Google Scholar 

  6. M. Schimbo, K. Furukawa, K. Fukuda, K. Tanzawa, Silicon-to-silicon direct bonding method. J. Appl. Phys., 60(8), 1986.

    Google Scholar 

  7. J. W. Berenschot, J. Gardeniers, T. Lammerink, M. Elwenspoek, New applications of r.f.-sputtered glass film as protection and bonding layers in silicon micromachining. Sensors and Actuators A, 41-42, 1994, 338–343.

    Google Scholar 

  8. R. Lagtenberg, S. Bouwstra, M. Elwenspoek, Low temperature glass bonding for sensors applications using boron oxide films. J. Micromech. Microeng., 1, 1991 157–160.

    Google Scholar 

  9. H. J. Ouenzer, W. Benecke, Low-temperature silicon wafer bonding. Sensors and Actuators A, 32, 1992, 340–344.

    Google Scholar 

  10. B. Müller, A. Stoeffel, Tensile strength characterisation of low-temperature fusion bonded silicon wafers. J. Micromech. Microeng., 1, 1991, 161–166.

    Google Scholar 

  11. L. Tenerz, B. Hök, Silicon microcavities fabricated with a new technique: Electronics Letters, 22(11), 1986, 615–616.

    Google Scholar 

  12. S. Sanchez, G. Gui, M. Elwenspoek, Spontaneous direct bonding of thick silicon nitride. J. Micromech. Microeng., 7, 1997, 11–113.

    Google Scholar 

  13. R. C. Frye, J.E. Griffith, Y.H. Wong, A field assisted bonding process for silicon dielectric isolation. J. Electrochem. Soc., 133(8), 1986, 1673–1677.

    Google Scholar 

  14. W. D. Maszara, G. Goetz, A. Caviglia, J.B. McKitterick, Bonding of silicon wafers for silicon-on insulator. J. Appl. Phys., 64, 1988, 4943–4951.

    Google Scholar 

  15. X. L. Xu, Q.Y. Tong, Novel two steps SDB technology for high performance thin film SOI/MOSFET applications. Electron. Lett., 25, 1989, 394–395.

    Google Scholar 

  16. M. Reiche, K. Gutjahr, D. Stolze, D. Burczyk, M. Petrold, The effect of plasma pretreatment on the SiKSi bonding behaviour. Electroch. Soc. Proceed., PV 97-36, 473–444.

    Google Scholar 

  17. K. Hermasson, U. Lindberg, G. Palmskog, Wetting properties of silicon surfaces. Electrochem. Soc. Fall Mtg, Proceed., PV 91-2, 1991.

    Google Scholar 

  18. N. W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rixehart, Winston (eds.). New York-Sydney, 1976.

    Google Scholar 

  19. W. Kissinger, G. Kissinger, Microstructures for perfect wafer bonding in different temperature ranges. Electrochem. Soc. Fall Mtg, Proceed., PV 91-2, 1991.

    Google Scholar 

  20. U. Bäckhund, K. Hermasson, L. Smith, U. Lindberg, Electrochem. Soc. Fall Mtg, Proceed. PV, 91-2, 1991.

    Google Scholar 

  21. J. Dziuban, I. Halas, M. Depka, Washing and activation receipts — non published materials, in Polish. Reports of the R&D Programme PBZ 2705 on Silicon Micromechanical Sensors, financed by The Committee of Scientific Research, Poland, 1997.

    Google Scholar 

  22. W.P. Maszara, Silicon-on isolator by wafer bonding — a review. J. Electrochem. Soc., 138(1), 1991, 341–347.

    Google Scholar 

  23. P.W. Barth, Silicon fusion bonding for fabrication of sensors, actuators and microstructures. Sensors and Actuators A, 21-23, 1990, 919–926.

    Google Scholar 

  24. C. Harendt, C.E. Hundt, W. Appel, H.G. Grat, B. Höfflinger, E. Petenker, Silicon on insulator material by wafer bonding. J. Electron. Meter., 20, 1991, 267–277.

    Google Scholar 

  25. G. Kissinger, W. Kissinger, Hydrophilicity of silicon wafers for direct bonding. Phys. St. Solidi A, 123, 1991, 185–192.

    Google Scholar 

  26. S. Bengtsson, O. Engström, IC Process compatible preparation of silicon interfaces using the silicon-to-silicon direct bonding method. Proc. ESSDERC 89, A. Henberger, H. Ryssel, P. Lange (eds.). Berlin, Springer 1985.

    Google Scholar 

  27. S. Bengtsson, O. Engström, Low temperature preparation of silicon/silicon interfaces by the silicon to silicon direct bonding method. J. Electrochem. Soc., 137, 1990, 2297–2303.

    Google Scholar 

  28. T. Abeoc. M. Nakano, T. Itoh, Silicon wafer bonding technology for SOI structures. Proc. 4th Int. Symp. On Silicon-on-Insulator Techn. and Dev., Electrochem. Soc. Proc., 90-6, 1990, 61–71.

    Google Scholar 

  29. T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakamoto, Silicon wafer bonding mechanism for silicon-on-insulator structures (Part III). Jpn. J. Appl. Phys., 29, 1990, L2311–2314.

    Google Scholar 

  30. M. Grundner, H. Jacob, Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high resolution electron energy loss spectroscopy. Appl. Phys., A39, 1986, 73–82.

    Google Scholar 

  31. K. Mitani, Silicon wafer bonding, an overview. Electrochem. Soc. Proc., PV9736, 1998, 1–12.

    Google Scholar 

  32. G. Gui, M. Elwenspoek, J.G.E. Gardeniers, P.V. Lambeck, Present and future role of CMP in wafer bonding. Electrochem. Soc. Proc., PV9736, 1998, 114–123.

    Google Scholar 

  33. C. Gui, H. Albers, J.G.E. Gardeniers, M. Elwenspoek, P.V. Lambeck, Fusion bonding of rough surfaces with polishing technique for silicon micromachining. Microsyst. Technol., 1997, 122-128.

    Google Scholar 

  34. D.L. Gay, P.T. Baine, B.M. Amstrong, H.S. Gamble, SOI production using polish stops formed by trench before bond technique. Electrochem. Soc. Proc., PV9736, 1998, 536–543.

    Google Scholar 

  35. J.B. Lasky, Wafer bonding for silicon-on insulator technologies. Appl. Phys. Lett., 1(48), 1986, 78–80.

    Google Scholar 

  36. R. Stengl, K.Y. Ahn, U. Gösele, Bubble-free silicon wafer bonding in a non-clean room environment. Jpn. J. Appl. Phys., 27, 1998, L2364–2366.

    Google Scholar 

  37. S.N. Farrens, C.E. Hunt, B.E. Roberts, J.K. Smith. A kinetics study on the strength of direct bonded wafers. J. Electrochem. Soc., 141(11), 1994, 3225–3230.

    Google Scholar 

  38. R. Stengl, T. Tan, U. Gösele, A model for the silicon wafer bonding. Jpn. J. Appl. Phys., 28, 1989, 1735–1741.

    Google Scholar 

  39. U.K. Weldon, V.E. Marisco, Y.J. Chabal, A. Agerwalda, D.J. Eglesham, Y. Candano, S.B. Christman, E.E. Chaban, A mechanistic study of silicon wafer bonding. Electrochem. Soc. Proceed., PV 9736, 1998, 229–248.

    Google Scholar 

  40. J. Harosma, G.A.C.M. Spierings, U.K.P. Bierman, Silicon-on-insulator wafer bonding-wafer thinning technological evaluation. Jpn. J. Appl. Phys., 28, 1989 1426–1443.

    Google Scholar 

  41. M. Horuchi, S. Aoki, A mechanism of silicon wafer bonding. Electrochem. Soc. Fall Mtg., PV 91-2, 1991.

    Google Scholar 

  42. K. Gutjahr, T. Martini, U. Gösele, Concepts of wafer debonding. Electrochem. Soc. Proceed., PV 9736, 1998, 72–78.

    Google Scholar 

  43. S. Mack, H. Baumann, U. Gösele, H. Werner, R. Slögly, Analysis of bonding relates gas enclosure in micromachined cavities sealed by silicon wafer bonding. J. Electrochem. Soc., 144, 1997, 1106–1111.

    Google Scholar 

  44. C. Maleville, O. Rayssac, H. Moriceau, B. Biasse, L. Baroux, B. Aspar, M. Bruel, Detailed characteristic of wafer mechanisms. Electrochem. Soc. Proceed., PV 9736, 1998, 46–55.

    Google Scholar 

  45. V. Lehman, U. Gösele, K. Mitani, Contamination protection of semiconductor surfaces by wafer bonding. Solid St. Techn., 33, 1990, 91–92.

    Google Scholar 

  46. F. Secco d’Aragona, T. Iwamoto, Hern-Der-Chiou, A. Mirza, A study of silicon direct wafers bonding for MEMS applications. Electrochem. Soc. Proceed., PV 9736, 1998, 127–137.

    Google Scholar 

  47. R.D. Black, E.L. Hall, N. Lewis, R.S. Gilmore, S.D. Arthur, R.D. Lillguist. J. Electrochem. Soc., 107, 1988, 495–497.

    Google Scholar 

  48. C. Parkes, E. Murray, H.S. Gamble, B.M. Amstrong, S.J.N. Mitchell, G.A. Amstrong, Characterisation of electronic devices employing silicon bonding technology. Electrochem. Soc. Fall Mtg., Proceed., PV 91-2, 1991.

    Google Scholar 

  49. R. Wilson, H.S. Gamble, S.J.N. Mitchell, Improvement of silicon power device characteristic using bonding technology. Electrochem. Soc. Fall Mtg., Proceed., PV 91-2, 1991.

    Google Scholar 

  50. T. Abe, J.H. Matlock, Wafer bonding technique for silicon-on insulator technology. Solid St. Techn., 11(33), 1990, 39–40.

    Google Scholar 

  51. K. Mitani, V. Lehmann, R. Stengl, D. Feijoo, U.M. Gösele, H.Z. Massond, Causes and prevention of temperature dependemt bubbles in silicon wafer bonding. Jpn. J. Appl. Phys., 30, 1991, 615–622.

    Google Scholar 

  52. U. Lehmann, U. Gösele, K. Mitani, Contamination protection of semiconductor. Solid. St. Techn., 4(33), 1990, 91–92.

    Google Scholar 

  53. C. Harendt, H.G. Graf, E. Penteker, B. Höfflinger, Wafer bonding: investigation and in situ observation of the bond process. Sensors and Actuators A, 21-23, 1990, 927–930.

    Google Scholar 

  54. K. Furukawa, M. Shimbo, K. Fuknala, K. Tanzawa, Lattin configuration and electrical properties of the interface of direct bonded silicon. Ext. Abstr. 18th Int. Conf. on Solid St. Dev. and Mater., Tokyo, 1986 (The Jpn. Soc. of Appl. Phys. Tokyo), 533–536.

    Google Scholar 

  55. H. Takagaki, R. Maeda, T.R. Chung, T. Suga, Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method. Sensors and Actuators A, 70, 1998, 164–170.

    Google Scholar 

  56. K.Y. Ahn, R. Stengl, T.Y. Tan, U. Gösele, Stability of interfacial oxide layers during silicon wafer bonding. J. Appl. Phys., 65, 1989, 561–563.

    Google Scholar 

  57. K.Y. Ahn, R. Stengl, T.Y. Tan, U. Gösele, P. Smith, Growth, shrinkage and stability of interfacial oxide layers between directly bonded silicon wafers. J. Appl. Phys., A-50, 1990, 85–94.

    Google Scholar 

  58. F.P. Widdershoven, J. Harisma, J.P.M. Naus, Boron contamination and antimony segregation at the interface of directly bonded silicon wafers. J. Appl. Phys., 68, 1990, 6253–6258.

    Google Scholar 

  59. L.J. Pakulti, P. Ling, P. Leonov, H. Kawayoshi, R. Ormond, J. Uan, Radiation response of CMOS SOI devices formed by wafer bond and etchback. IEEE Trans. Nuclear Sci., 35, 1988, 1653–1656.

    Google Scholar 

  60. C.A. Desmond, J.J. Olup, P. Obalgasem, J. Folta, G. Jernigan, Analysis of nitride bonding. Electrochem. Soc. Proceed., PV 9736, 1988, 171–178.

    Google Scholar 

  61. P. Rangsten, Ö. Vallin, K. Ljungberg, Y. Bäcklund, Quartz to quartz direct bonding. Electrochem. Soc. Proceed., Abstract Meeting 2061, Vol. 97-2.

    Google Scholar 

  62. T. H. Lee, Q.-Y. Tong, Y.-L. Chao, U. Gösele, Silicon and quartz by a smarter cut process. Electrochem. Soc. Proceed., Abstract Meeting 2061, vol. 97-2.

    Google Scholar 

  63. M. Bruel, B. Asper, C. Maleville, H. Moriceau, Unibond® SOI wafers achieved by smartcutA process. Electrochem. Soc. Proceed., Abstract Meeting 2061, vol. 97-2.

    Google Scholar 

  64. New bonding technology for SOI, Unibond®. SOI substrates of SOI TEC S.A., 1 Place Firmin Gautier, 38000, Grenoble, France, Technical information.

    Google Scholar 

  65. Q.Y. Tong, T.-H. Lee, L.-J. Huang, Y.L. Chao, W.J. Kim, R. Scholz, T.Y. Tan, U. Gösele, Design considerations for Si and SiC layer transfer by H+ implantation. Electrochem. Soc. Proceed., PV 9736, 1998, 521–528.

    Google Scholar 

  66. P. Kopperschmidt, G. Kästner, D. Hesse, Recent development in semiconductor-on-sapphire wafer bonding. Electrochem. Soc. Proceed., PV 97-36, 1998, 179–186.

    Google Scholar 

  67. B.E. Roberts, K.D. Choquette, K.M. Geib, S.H. Kravitz, R.D. Twesten, S.N. Farreus, Wafer bonding of GaAs, InP and Si annealed without hydrogen for advanced device technologies. Electrochem. Soc. Proceed., PV 97-36, 592–595.

    Google Scholar 

  68. E. Jalaquier, B. Aspar, S. Pocas, J.F. Michand, A.M. Papon, M. Bruel, Transfer of thin InP films onto silicon substrate by proton implementation process. IRPM 99, Proceed. 11th Int. Conference on InP and Rel. Materials, Piscataway, USA, 1999, 26–27.

    Google Scholar 

  69. E. Jalaquier, B. Aspar, J.F. Michand, M. Zussy, A.M. Papon, M. Bruel, Transfer of 3″ GaAs film on silicon substrate by proton implementation process. El. Lett., 35(6), 1999, 477–478.

    Google Scholar 

  70. K. Petersen, P.W. Barth, J. Poyolock, J. Brown, J. Mallon, J. Bryzek, Silicon fusion bonding for pressure sensors. IEEE Solid St. Sensors and Actuators Workshop, 1988, 114–147.

    Google Scholar 

  71. K. Petersen, J. Brown, T. Veurmellen, P. Barth, J. Mallon Jr., J. Bryzek, Ultrastable high temperature pressure sensors using silicon fusion bonding. Sensors and Actuators A, 21-23, 1990, 96–101.

    Google Scholar 

  72. Product information, NovaSensor/Lucas Nova Sensor, 1055, Mission Court, Fremont, CA 94539, USA.

    Google Scholar 

  73. Y. Wang, X. Zheng, L. Liu, Z. Li, A novel structure of pressure sensors. IEEE Tran. El. Dev., ED-38(8), 1991, 1797–1801.

    Google Scholar 

  74. L. Parameswaran, V.M. McNeil, M.A. Huff, M.A. Schmidt, Sealed cavity microstructure using wafer bonding technology. Techn. Digest, 7th Int. Conf. Solid St. Sensor and Actuator, Transducers 93, Yokohama, Japan, 7—10 June, 1993, 274–277.

    Google Scholar 

  75. C.H. Hsu, M.A. Schmidt, Micromachined structures fabricated using a wafer-sealed cavity process. Techn. Dig. IEEE Solid St. Sensors and Actuators Workshop, 1994, 151–155.

    Google Scholar 

  76. L. Parameswaran, A. Mirza, W.K. Chan, M.A. Schmidt, Silicon pressure sensors using a wafer bonded sealed cavity process. Tech. Dig. The 8th Int. Conf. on Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 582–585.

    Google Scholar 

  77. J.M. Noworolski, E. Klaasen, J. Logan, K. Petersen, N. Maluf, Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etchback. Tech. Dig. the 8th Int. Conf. Solid St. Sensors and Actuators Transducers 95, Eurosensors IX Stockholm, Sweden, 25—29 June, 1995, 71–74.

    Google Scholar 

  78. M.A. Samber, T.P.L. Ho-Tran, Evaluation of the fabrication of pressure sensors using bulk micromachining before IC processing. Sensors and Actuators A, 46-47, 1995, 147–150.

    Google Scholar 

  79. J. Mandla, D. Lefort, A. Migeon, A new micromachining silicon high-accuracy pressure sensor. Sensors and Actuators A, 46-47, 1995, 129–132.

    Google Scholar 

  80. J. Hermann, C. Bourgeois, F. Porret, B. Kloeck, Capacitive differential pressure sensor. Tech. Dig. the 8th Int. Conf. Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 620–623.

    Google Scholar 

  81. S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, A solid-state pressuresensing microsystem for biomedical applications. Sensors and Actuators A, 31, 1997, 651–657.

    Google Scholar 

  82. Y. Matsumoto, M. Iwahiri, H. Tanaka, M. Ishiala, T. Nakamura, A capacitive accelerometer using SDB-SOI structure. Tech. Dig. the 8th Int. Conf. Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 550–553.

    Google Scholar 

  83. E. Klaasen, K. Petersen, J.M. Noworolski, J. Logan, N.I. Maluf, J. Brown, C. Storment, W. Culley, G.T.A. Kovacs, Silicon fusion bonding and deep reactive ion etching: a new technology for microinstrumentation. Tech. Dig. the 8th Int. Conf. Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Sweden, 25—29 June, 1995, 556–559.

    Google Scholar 

  84. Y.T. Lee, H.D. Seo, A. Kawamura, T. Yamada, Y. Matsumoto, M. Ishida, T. Nakamura, Compensation method of offset and its temperature drift in silicon piezoresistive pressure sensor using double-bridge configuration. Tech. Dig. the 8th Int. Conf. Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 570–573.

    Google Scholar 

  85. N. Schweinger, J. Burgold, A. Achermann, Piezoelectric micropumps based on a new deposition technology for ZnO films. Microsystem Technologies, 4th Int. Conf. on Micro-Opto-Mech. System and Components, Potsdam, 1994, 1035–1044.

    Google Scholar 

  86. H. Jerman, Electrically activated micromachined diaphragm valves. Techn. Dig. IEEE Solid St. Sensors and Actuators Workshop, 1990, 65–69.

    Google Scholar 

  87. J. Drake, H. Jerman, A precision flow restrictor for medical infusion therapy. Tech. Dig. the 8th Int. Conf. on Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 373–376.

    Google Scholar 

  88. H. Jerman, Electrically-activated normally-closed diaphragm valves. Tech. Dig., 6th Int. Conf. Solid St. Sensors and Actuators, 1991, 1045–1048.

    Google Scholar 

  89. R. Zengerle, A. Richter, H. Sandmeier, A micromembrane pump with electrostatic actuation. Proceed. IEEE Micro Electro Mechanical Systems Workshop, 1992, Travemünde, 19–24.

    Google Scholar 

  90. R. Pinker, D. Cammack, B. Khan, Novel fabrication of miniature discharge lamps by wafer bonding. Electrochem. Soc. Proceed., PV 97-36, 193–199.

    Google Scholar 

  91. Y. Bäckhund, K. Hjort, S. Johansson, L. Stenmark, Micro Sculpturing: Somewhat new materials and micromachining methods to meet new applications. Proceed. Eurosensors XIII, 13th European Conf. On Solid-St. Transducers, den Haag, Holland, September 12—15, 1999, 527–530.

    Google Scholar 

  92. London, A. Epstain, A. Ayon, S.M. Spearing, T. Harrsion, J. Kerrebrock, A microfabricated high pressure bipropellant rocket engine. Book of Abstracts Eurosensors XIV, 14th European Conf. On Solid-St. Transducers, Kopenhagen, Denmark, August 28—30, 2000.

    Google Scholar 

  93. P.-F. Indermühle, N.F. de Rooij, Integration of a large tip with high aspect ratio on an X-Y microstage for AFM imagining. Tech. Dig. 8th Int. Conf. Solid St. Sensors and Actuators, 1996, 636–639.

    Google Scholar 

  94. P.F. Indermühle, V.P. Jachlin, J. Brugger, C. Linder, N.F. de Rooij, N. Binggeli, AFM imaging with X-Y micropositioner with integrated tip. Sensors and Actuators A, 46-47, 1994, 562–565.

    Google Scholar 

  95. J. Welham, J. Greenwood, M. Bartoli, A lateral resonant pressure sensor fabricated via fusion bonding, wafer thinning and reactive-ion-etching. Eurosensors XII, Proceed. 12th Europ. Conf. on Solid St. Transducers Southampton, 13—16 September 1998, N.M. White (ed.). IOP Publishing 1998, Vol. 1, 353–356.

    Google Scholar 

  96. J. Kräenert, C. Deter, T. Gessner, W. Dötzel, Laser display technology. Proceed. 11th IEEE Workshop on Microelectromechanical Systems, January 25—29, Heidelberg, 1998, 110–115.

    Google Scholar 

  97. P. Menotti, A. Ferreira, Les micromachines, ed. Hermes, Paris, 1998.

    Google Scholar 

  98. Fe.F. Regnier, Microfabricated liquid chromatography columns based on collocated monolith support structures. Proceed. μTAS 98 Workshop, 1998, Kluwer, Ac. Publ. ed: D.J. Harrison, A. van den Berg, 451–456.

    Google Scholar 

  99. E. Kälvesten, T. Cornan, H. Huiku, K. Weckström, P. Meriläninen, G. Stemma, A silicon IR source and CO2 chamber for CO2 measurements. Proceed. 11th Workshop on Microelectromechanical Systems, January 25—29 Heilderberg, 1998, 69–74.

    Google Scholar 

  100. Z. Lin, D.L. De Voe, Micromechanism fabrication using silicon fusion technology. Rob. Comp. Inetgrat. Manufac., 17(1-2), 2001, 131–137.

    Google Scholar 

  101. K. Schjolberg-Henriksen, M.M. Visser Taklo, A. Hanneborg, G.U. Jensen, Oxide charges induced by plasma activation for wafer bonding. Sensors and Actuators A, 102(1-2), 2002, 99–105.

    Google Scholar 

  102. S. Bengtsson, P. Amirez, Room temperature wafer bonding of silicon, oxidized silicon, crystalline quartz. J. Electr. Mat., 29(17), 2000, 909–915.

    Google Scholar 

  103. www.suss.com

    Google Scholar 

  104. O. Zucker, W. Iangerheinrich, M. Kulozik, H. Goebel, Application of oxygen plasma processing for silicon direct bonding. Sensors and Actuators A, 36, 1993, 227–231.

    Google Scholar 

  105. W. Kissinger, G. Kissinger, Void-free silicon-wafer-bond strengthening in the 200—400°C temperature range. Sensors and Actuators A, 36, 1993, 1–3.

    Google Scholar 

  106. D.-Y. Tong, G. Cha, R. Gafitenau, U. Gösele, Low temperature wafer direct bonding. J. Microelectromech. System, 3(1), 1994.

    Google Scholar 

  107. M. Horiuchi, S. Aoki, Characteristics of silicon wafer bond strengthening by annealing. J. Electrochem. Soc., 139, 1992, 2589–2594.

    Google Scholar 

  108. Q.Y. Tang, Q. Gan, G. Hudson, G. Fountain, P. Enquist, P. Scholtz, V. Gosele, Low temperature hydrophobic bonding. Phys. Lett., 83(23), 2003, 767–769.

    Google Scholar 

  109. Q.Y. Tang, Q. Gan, G. Fountain, P. Enquist, Fluorine enhanced low-temperature-bonding of native-oxide covered Si wafers. Appl. Phys. Lett., 85(17), 3731–3733.

    Google Scholar 

  110. W.H. Ko, J.T. Sumito, G.J. Yell, Bonding techniques for microsensors; in:Micromachining and micropackaging of transducers, C.D. Fung (ed.). Elsevier: New York, 1985, 41–61.

    Google Scholar 

  111. S.S. Deng, J. Wei, C.M. Tan, M.L. Nai, W.B. Yu, H. Xie, Low temperature silicon wafer bonding by sol-gel processing. Int. J. Comp. Eng. Sc., 4(3), 2003, 655–658.

    Google Scholar 

  112. S. Schulze, I. Albrecht, M. Noffke, W. Benecke, Low temperature wafer bonding by sol-gel processing. Proceed. 188 Spring Electrochem. Soc. Meet., Chicago, 1995.

    Google Scholar 

  113. W. Kern, G.L. Schnable, Chemically vapour deposited boro-phosphoro-silicate glasses for silicon device applications. RCA Review, 43, 1993, 423–447.

    Google Scholar 

  114. L.A. Fields, R.S. Muller, Fusing silicon wafers with low melting temperature glass. Sensors and Actuators A, 21-23, 1990, 919–926.

    Google Scholar 

  115. S. Li, C.B. Freindhof, R.M. Young, R. Ghodssi, Fabrication of micronozzles using low temperature wafe-level bonding with SU 8. J. Microeng. Micromechanics, 13, 2003, 732–738.

    Google Scholar 

  116. F. Niklaus, Low temperature BCB bonding. Sensors and Actuators A, 92(1-3), 2001, 235–24.

    Google Scholar 

  117. K.W. Oh, A. Han, S. Bhansali, Ch. A. Ahn, A low temperatures bonding technique using spin-on fluorocarbons polymers to assemble microsystems. J. Micromech. Microeng., 2, 2003, 187–191.

    Google Scholar 

  118. H. Nakanishi, T. Nishimoto, R. Nokamura, A. Yotsumoto, S. Shoji, Studies on SiO2-SiO2 bonding with hydrofluoric acid — room temperature and low stress bonding technique for MEMS. Proc. 11th IEEE MEMS Workshop, 1998, 609–614.

    Google Scholar 

  119. H. Nakanishi, T. Niskimoto, N. Nakamura, S. Nagamachi, A. Arai, Y. Iwata, Y. Mito, Fabrication of electrophoresis devices on quartz. Proceed. 10th IEEE MEMS Workshop, 1997, 299–304.

    Google Scholar 

  120. H. Becker, K. Lowachi, A. Manz, Planar quartz chip with submicron channels for twodimensional capillary electrophoresis applications. J. Micromech. Microeng., 8(1), 1999, 24–28.

    Google Scholar 

  121. D.Y. Sim, T. Kurabayashi, M. Esashi, Bakable silicon pneumatic valve. Tech. Dig. 8th Int. Conf. Solid St. Sensors and Actuators Transducers ’95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 280–283.

    Google Scholar 

  122. D.F. Wolfenbuttel, Low-temperature intermediate AuKSi wafer bonding: electric or silicide bond. Sensors and Actuators A, 62 1997, 680–686.

    Google Scholar 

  123. A.-L. Tiensuu, M. Bexel, J.-A. Schweiz, L. Smith, S. Johannson, Assembling three-dimensional microstructures using Au_Si eutectic bonding. Sensors and Actuators A, 45, 1994, 227–236.

    Google Scholar 

  124. U.M. Mescheder, M. Alavi, K. Hiltmann, Ch. Lietzau, Ch. Nachtigall and H. Sandmaier, Local laser bonding for low temperature budget. Sensors and Acuators A, 97-98, 2002, 422–427.

    Google Scholar 

  125. M. Waelti, N. Schnecberger, O. Paul, H. Baltes, Low temperature packaging of CMOS infrared microsystems by Si_Al_Au bonding. Electrochem. Soc. Proceed., PV 97-36, 1998, 147–145.

    Google Scholar 

  126. P.M. Zawracky, B. Vu, Patterned eutectic bonding with Al/Ge thin films for MEMS. Proceed. SPIE, vol. 2639, 1995, 46–52.

    Google Scholar 

  127. M.S. Ismail, R.W. Bower, Platinum silicide fusion bonding. Electron. Lett., L7, 1992, 1153–1155.

    Google Scholar 

  128. D.J. Yao, G.C Hen, C-J. Kim, Low-temperature eutectic bonding for in-plane type micro thermoelectric cooler. 2001 ASME Int. Mech. Congress and Exposition, Nov. 11—26, 2001, NY, USA.

    Google Scholar 

  129. M.A. Schmidt, Wafer to wafer bonding for microstructure formation. Proceed. IEEE, 68(8), 1998, 1575–1585.

    Google Scholar 

  130. H.Y Wang, R.S. Foote, S.C. Jacobson, J.H Schneibel, J.M. Ramsey, Low temperature bonding for microfabrication of chemical analysis devices. Sensors and Actuators B, 45(3), 1997, 199–207.

    Google Scholar 

  131. R. Zengerle, A. Richter, H. Sandmeier, A micromembrane pump with electrostatic actuation. MEMS92 Proceed., Travemünde 4—7 February, 1992, 19–24.

    Google Scholar 

  132. J.H. Correia, M. Bartek, R.F. Wolffenbutel, Bulk-micromachined tunable Fabry-Perrot microinterferometer for the visible spectral range. Eurosensors XII, Proceed. 12th Europ. Conf. on Solid St. Transducers Southampton, 13—16 September 1998, N.M. White (ed.). IOP Publishing 1998, Vol. 1, 287–290.

    Google Scholar 

  133. J.M. Ruano-Lopez, M. Aguirregabiria, Marroyo, J. Berganzo, F.J. Blanco, P. de la Fuente, E. Castano, K. Mayora, An optical microfluidic fluidic platform based on the combination of a novel SU 8 multilayer technology, waveguides and photodiodes on silicon. MicroTAS, 2004, 26—20 September, Malmő, Sweden.

    Google Scholar 

  134. C.C. Lee, C.Y. Wang, G. Matijesievic, Au_In bonding below eutectic point or silicode bond. IEEE Trans. Comp. Hybrids and Manufac. Techn., 16, 1999, 311–316.

    Google Scholar 

  135. B. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup, A practical microgripper by fine alignment, eutectic bonding and SMA actuator. Tech. Dig. the 8th Int. Conf. on Solid St. Sensors and Actuators Transducers 95, Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 368–369.

    Google Scholar 

  136. Wallis, D. Pommerantz, Field assisted glass-metal sealing. J. Appl. Phys., 40(10), 1969, 3346–3949.

    Google Scholar 

  137. H. Iback, Thermal expansion of silicon and zinc oxide. Phys. St. Solidi, vol. 31, 625–634.

    Google Scholar 

  138. G. Slack, S.F. Bartraum, Thermal expansion of some diamond like crystals. J. Appl. Phys., 46, 1975, 89–98.

    Google Scholar 

  139. G.K.J. White, Thermal expansion of reference materials: copper, silica and silicon. J. Phys., D-6, 1973, SF 2070–2078.

    Google Scholar 

  140. N. Dutta, Lattice constants and thermal expansion of silicon up to 900°C by X-Ray Method. Phys. St. Solidi, 2, 1962, 984–986.

    Google Scholar 

  141. M.A. Norton, J.N. Berthold, S.F. Jacobs, W.A. Plummer, Precise measurements of the thermal expansion of silicon near 40°C. J. Appl. Phys., 47, 1976, 1683–1685.

    Google Scholar 

  142. Product specification: SD-2 glass for anodic bonding, Hoya Japan Borofloat Flat Glasses: Schott Glaswerke Nr 03SPQ-05/04 Alkali free and alkali low thin glasses: AF45-D263, Desag TKT Pyrex 7740, 7070 Corning Co.

    Google Scholar 

  143. Y. Hachitani, H. Sagara, Glass substrates for silicon sensors. Abstract: Tech. Dig. Int. Conf. on Solid St. Sensors and Actuators Transducers 93, Yokohama, Japan, 7—10 June, 1993.

    Google Scholar 

  144. T. Rogers, J. Kowal, Selection of anodic bonding conditions and materials compatibility for silicon-glass capacitive sensors. Sensors and Actuators A, 46-47, 1995, 113–120.

    Google Scholar 

  145. T. Rogers, Consideration of anodic bonding for capacitive type silicon/glass sensor fabrication. J. Micromech. Microeng., 2, 1992, 164–166.

    Google Scholar 

  146. For details of material properties of glass for anodic bonding look at: SD-2: www.hoyacandeo. co.jp; Pyrex: www.corning.com; Borofloat 33: www.schott.com/borofloat.

    Google Scholar 

  147. K. Hildendorf, P. Krause, E. Obermeier, Reduction of the influence of the anodic bonding process on the behaviour of pressure sensors by using new glass substrates. Microsystem Technologies 96, Potsdam 1996, 331–336.

    Google Scholar 

  148. P.R. Younger, Hermetic glass sealing by electrostatic bonding. J. Noncrystall. Solids, 38-39, 1980, 909–914.

    Google Scholar 

  149. M. Haerz, H. Engelke, Curvature changing or flattening of anodically bonded silicon and borosilicate glass. Sensors and Actuators A, 55, 1996, 201–209.

    Google Scholar 

  150. T.R. Anthony, Anodic bonding of imperfect surfaces. J. Appl. Phys., 54(5), 1983, 2419–2428.

    Google Scholar 

  151. G. Wallis, Direct current polarisation during field-assisted glass-metal sealing. J. Am. Ceramic. Soc., 53(10), 1970, 563–567.

    Google Scholar 

  152. E. Carlson, K.W. Hang, G.F. Stockdale, Electrode "polarisation" in alkali containing glasses. J. Am. Ceramic. Soc., 55(7), 1972, 337–341.

    Google Scholar 

  153. M.P. Borom, Electron-microprobe study of field assisted bonding of glasses to metals. J. Am. Ceramic. Soc., 56(5), 1973, 254–257.

    Google Scholar 

  154. E. Carlson, K.W. Hang, G.F. Stockdale, J. Am. Ceramic. Soc., 57(7), 1974, 295–300.

    Google Scholar 

  155. K.B. Albaugh, Electrode phenomena during anodic bonding of silicon to sodium borosilicate glass. J. Electrochem. Soc., 138, 1991, 3089–3094.

    Google Scholar 

  156. M. Aizpurha, J.M. Artola, E. Castario, F.J. Gracia, A proposed model for the transferred charge in an anodic bonding process. Proceed. Eurosensors XI, 11th European Conf. On Solid-St. Transducers, Warsaw, Poland, September 21—24, 1997, 1253–1256.

    Google Scholar 

  157. B. Schmidt, P. Nitzche, K. Lange, S. Grigull, U. Kreissig, In-situ investigation of ion drift processes in glass during anodic bonding. Sensors and Actuators A, 67, 1998, 191–198.

    Google Scholar 

  158. K.B. Albaugh, D.H. Rassmussen, Rate processes during anodic bonding. J. Am. Ceramic. Soc., 75(10), 1992, 2644–2648.

    Google Scholar 

  159. M. Despont, H. Gross, F. Arrouy, C. Stebler, U. Staufer, Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding. Sensors and Actuators A, 55, 1996, 219–224.

    Google Scholar 

  160. C.G. Wilson, A.C. Carter, The self diffusion of sodium ions in a borosilicate glass and a soda-lima glass. Phys. Chem. Glasses, 5, 1964,.

    Google Scholar 

  161. P. Jorgessen, Effect on electric field on silicon oxidation. J. Chem. Phys., 37(1), 1962, 874–877.

    Google Scholar 

  162. R. G. Gossile, SIMS Analysis of a field-assisted glass-to-metal seal. J. Am. Ceram. Soc., 61(11-12), 1978, 539–540.

    Google Scholar 

  163. K. Lange, S. Grigull, M. Harz, U. Kreissig, B. Schmidt, Ion drift behaviour in borosilicate glass during anodic bonding to silicon or metals: Semiconductor Wafer Bonding. The Electrochemical Society Proceed. Series PV-95-7, 1995, Pennington, NJ, 371–378.

    Google Scholar 

  164. Cozma, B. Puers, Characterisation of the electrostatic bonding of silicon and Pyrex glasses. J. Micromech. Microeng., 5, 1995, 98–102.

    Google Scholar 

  165. J. Dziuban, A. Górecka-Drzazga, J. Koszur, P. Kowalski, An influence of anodic bonding on silicon pressure sensors quality. Proceed. 21st Conference Int. Soc. Hyb. Micr. Poland Chapter, Ustroń, 5—8 October, 1997, 111–120.

    Google Scholar 

  166. H. Baumann, S. Mack, H. Minneli, Bonding of structured wafers, Semiconductor wafer bonding: physics and application. Electrochem. Soc. Proceed., PV 95-7, 1995.

    Google Scholar 

  167. S. Go, Y.H. Cho, Experimental evaluation of anodic bonding process using Taguchi method for maximum interfacial fracture toughness. IEEE Workshop MEMS 98, Heidelberg, 1998, 318–321.

    Google Scholar 

  168. Y. Kanda, K. Matsunde, Ch. Murayama, J. Sugaya, The mechanism of field assisted silicon glass bonding. Sensors and Actuators A, 21-23, 1990, 939–943.

    Google Scholar 

  169. J. Dziuban, Activation energy of silicon to glass anodic bonding process. Proceed. Eurosensors XIII, 13th European Conf. On Solid-St. Transducers, den Haag, Holland, September 12—15, 1999, 192–193.

    Google Scholar 

  170. H. Nese, A. Hanneborg, Anodic bonding of silicon to silicon wafers coated with aluminum, silicon oxide, polysilicon or silicon nitride. Sensors and Actuators A, 37-38, 1993, 61–67.

    Google Scholar 

  171. Hanneborg, M. Nese, P. Ölckers, Silicon-to-silicon anodic bonding with borosilicate glass layer. J. Micromech. Microeng., 1, 1991, 139–144.

    Google Scholar 

  172. P. Krause, M. Sporys, E. Obermeier, K. Lange, S. Grigull, Silicon to silicon anodic bonding using evaporated glass. Tech. Dig. 8th Int. Conf. Solid St. Sensors and Actuators Transducers `95, Stockholm, Sweden 25—29 June, 1995, 228–231.

    Google Scholar 

  173. J. Mack, H. Baumann, U. Gösele, H. Werzer, R. Shögl, Analysis of bonding-related gas enclosure in micromachined cavities sealed by silicon wafer bonding. J. Electrochem. Soc., 144, 1997, 1106–1111.

    Google Scholar 

  174. W.B. Choi, B.K. Ju, Y.H. Lee, S.J. Jeong, N.Y. Lee, M.Y. Sung, M.H. Oh, Glass-to-glass bonding for vacuum packaging of field emission display in an ultra-high-vacuum chamber using silicon thin film. J. Electrochem. Soc., 146(1), 1999, 400–404.

    Google Scholar 

  175. H. Heuni, S. Shoji, Y. Shoji, K. Yoshini, M. Esashi, Vacuum packaging for microsensors by glass-silicon anodic bonding. Sensors and Actuators A, 43, 1994, 243–248.

    Google Scholar 

  176. S. Shoji, M. Esashi, Bonding and assembling methods for realizing at μTAS. Proceed. μTAS 94, Twente, 1995 167–179.

    Google Scholar 

  177. J.B. Sanders, A.Q. Tool, Effect of heat treatment on the expansive of a Pyrex glass. Burr. Stand. J. Res., 11, 1933, 795, cited after pos. [149].

    Google Scholar 

  178. A. Harz, Anodic bonding for the third dimension. J. Micromech. Microeng., 2, 1992, 161–162.

    Google Scholar 

  179. S. Nehlsen, V. Relling, F. Kraus, J. Lübke, J. Müller, Lateral Pyrex thin film anodic bonding and KOH deep etching of silicon substrates for microfluidic applications. Microsyst. Technol., 96, 1996, 217–222.

    Google Scholar 

  180. J.A. Plaza, J. Estere, E. Lora-Tamayo, Effect of the silicon oxide, silicon nitride and polysilicon layers on the electrostatic pressure during anodic bonding. Sensors and Actuators A, 67, 1998, 181–184.

    Google Scholar 

  181. J.A. Plaza, J. Estere, E. Lora-Tamayo, Non destructive in-situ test for anodic bonding. Sensors and Actuators A, 60, 1997, 176–180.

    Google Scholar 

  182. J. Dziuban, L. Nieradko, Multilayer anodic bonding for microTAS. Proc. 21st Conf. Int. Microel. Pack. Soc. IMAPS Polish Chapter, Ustroń, 5—8 October 1997, 121–123.

    Google Scholar 

  183. J. Dziuban, S. Patela, Glass on insulator on silicon planar waveguides. Proceed. 12th Europ. Conf. on Solid St. Transducers Southampton, 13—16 September 1998, N.M. White (ed.). IOP Publishing, vol. 1, 728–729.

    Google Scholar 

  184. J. Dziuban, S. Patela, I. Halas, GIS-type integrated optical waveguide. Proc. 22nd Conf. Int. Microel. Pack. Soc. IMAPS Polish Chapter, Zakopane, 1—3 October 1998, 135–138.

    Google Scholar 

  185. J. Dziuban, A. Górecka Drzazga, I. Halas, M. Kramkowska, T. Ohly, E. Prociów, Anodic bonding of silicon with unconventional surface layers. Proc. 22nd Conf. Int. Microelec. Pack. Soc. IMAPS Polish Chapter, Zakopane, 1—3 October 1998, 127–130.

    Google Scholar 

  186. P.T. Baire, L.J. Quinn, B. Lee, S.J.N. Mitchell, H.S. Gamble, B.M. Amstrong, Electrostatic bonding for silicon on glass applications. Electrochem. Soc. Proceedings, PV 97-36, 1997, 214–221.

    Google Scholar 

  187. W.-B. Choi, B. Ewon, S. Jeong, N.-Y. Lee, K.-H. Koh, M.R. Hiskard, M.-Y. Sung, M.-H. Oh, Anodic bonding technique under low-temperature and low voltage using evaporated glass. Proceed. at 9th International Vacuum Microelectronic Conference, St. Petersburg 1996, 427–430.

    Google Scholar 

  188. D. Brooks, R.P. Donovan, C.A. Hardesty, Low temperature electrostatic silicon-to-silicon seals using sputtered borosilicate glass. J. Electrochem. Soc., 119, 1972, 545–546.

    Google Scholar 

  189. S. Weichel, R. de Rues, M. Lindahl, Silicon-to-silicon wafer bonding using evaporated glass. Sensors and Actuators A, 70, 1998, 179–184.

    Google Scholar 

  190. W.Y. Lee, F. Sequeda, J. Salem, Field assisted bonding below 200°C using metal and glass thin film foil-layers. Appl. Phys. Lett., 50, 1987, 522–524.

    Google Scholar 

  191. Esashi, A. Nakano, S. Shoji, H. Hebiguchi, Low-temperature silicon to silicon anodic bonding with intermediate low melting glass. Sensors and Actuators A, 21-23, 1990, 931–934.

    Google Scholar 

  192. Hameborg, M. Nesse, H. Jakobsen, R. Holsn, Silicon-to-thin film anodic bonding. J. Micromech. Microeng., 2, 1992, 317–321.

    Google Scholar 

  193. W.-B. Choi, B.-K. Ju, Y.-H. Lee, J.-W. Jeong, M.P. Raskard, N.-Y. Lee, M.-Y. Sung, M.-H. Oh, Experimental analysis of the anodic bonding with an evaporated glass layer. J. Micromech. Microeng., 7, 1997, 312–316.

    Google Scholar 

  194. R. Puers, A. Cozma, Bonding wafers with sodium silicate solution. J. Micromech. Microeng., 7, 1997, 114–117.

    Google Scholar 

  195. R.C. Frye, J.E. Griffith, Y.H. Wong, A field-assisted anodic bonding process for silicon dielectric isolation. J. Electrochem. Soc., 133, 1986, 1673–1677.

    Google Scholar 

  196. G. Wallis, J. Dorsey, J. Beckett, Field assisted seals of glass to Fe_Ni_Co alloy. Ceramic. Bulletin, 50(12), 1971, 958–961.

    Google Scholar 

  197. Y. Sim, T. Karabayashi, M. Esashi, A backable microvalve with KOWAR-glass-silicon-glass structure. J. Micromech. Microeng., 6, 1996, 266–271.

    Google Scholar 

  198. Polish norma PN FeNiCo 2N29PR.

    Google Scholar 

  199. J. Bryzek, K. Petersen, J. Mallon Jr, L. Christel, F. Pourohmeadi, Silicon sensors and microstructures. Nova Sensor, Fremont, 1991, CA, USA.

    Google Scholar 

  200. NEXUS analysis of microsystems 1996—2002. NEXUS office, Fraunhofer ISIT, Billenburger Strasse 53, D/4/99, Berlin, (patrz również MST News, 3, 1998, 37–40).

    Google Scholar 

  201. E. Peeters, S. Vergote, B. Puers, W. Sansen, A combined silicon fusion and glass/silicon anodic bonding process for an uniaxial capacitive accelerometer. J. Micromech. Microeng., 2, 1992, 167–169.

    Google Scholar 

  202. G. Hashimoto, C. Cabuz, K. Minami, M. Esashi, Silicon resonant angular rate sensor using electromagnetic excitation and capacitive detection. J. Micromech. Microeng., 5, 1995, 219–225.

    Google Scholar 

  203. L.M. Roylance, A batch fabricated accelerometer. IEEE Tran. El. Dev., ED-26(12), 1979, 1611–1917.

    Google Scholar 

  204. K. Kwon, S. Park, A bulk micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sensors and Actuators A, 66, 1992, 250–255.

    Google Scholar 

  205. J.A. Plaza, J. Esteve, E. Lora-Tamago, Simple technology for bulk accelerometer based on bond and etch-back silicon on insulator wafers. Sensors and Actuators A, 68, 1998, 299–302.

    Google Scholar 

  206. R. Puers, S. Reyntjens, Design and processing experiments of a new miniaturised capacitive triaxial accelerometer. Sensors and Actuators A, 68, 1998, 324–328.

    Google Scholar 

  207. H. Jakobsen, Sensor foundries and production of sensors of Sensonor Nov. A. S. J. Micromech. Microeng., 6, 1996, 193–196

    Google Scholar 

  208. G. Schröpfer, W. Elfein, M. de Labachelerie, H. Porte, S. Bellenoras, Lateral optical accelerometer micromachined in (100) oriented silicon with remote readout based on coherence modulation. Sensors and Actuators A, 68, 1998, 344–345.

    Google Scholar 

  209. S. Roy, R.G. de Auna, A. Izad, M. Mehregany, Miniature ice detection sensor systems for aerospace applications. IEEE Workshop MME Systems, Heidelberg, 1998, 75–80.

    Google Scholar 

  210. J. Schimkat, L. Kiesewatter, H.J. Geratter, F. Arndt, A. Steckenborm, H.-F. Schlack, Moving edge actuator: an electrostatic actuator for use in microrelay. Microsyst. Technol., Berlin, 1994, 989–996.

    Google Scholar 

  211. J. Bergvist, F. Rudolf, A new condenser microphone in silicon. Abstract, Eurosensors III, Montreux, Switzerland, 1989, 94–95.

    Google Scholar 

  212. T. Cormann, P. Enakson, G. Stemme, Deep wet etching of borosilicate glass using an anodically bonded silicon substrate or mask. J. Micromech. Microeng., 8, 1998, 84–87.

    Google Scholar 

  213. R. Varlan, W. Sansen, Micromachined conductometric p (CO2) sensor. Sensors and Actuators B, 44, 1997, 309–315.

    Google Scholar 

  214. B. Chévrier, K. Baert, T. Slater, A. Verbist, Micromachined infrared pneumatic detector for gas sensor. Microsyst. Technol., Berlin, 1994, 445–453.

    Google Scholar 

  215. K. Petersen, Silicon as a mechanical material. Proceed. IEEE, El.Dev., 70(5), 1982, 420–457.

    Google Scholar 

  216. for examples: www.kulite.com, www.us.sbt.siemens.com, www.sssinternational.com.

    Google Scholar 

  217. W.S. Czarnocki, Media isolated sensor. Sensors and Actuators A, 67, 1998, 142–145R.

    Google Scholar 

  218. W.S. Czarnocki, J.P. Schuster, Automotive sensors. Konf., COE 94, 1994, 171–187.

    Google Scholar 

  219. B. Hufenbach, S. Habinc, P. Vuillenmier, Space applications for smart sensors. Keynote lecture, Proceed. Eurosensors XIII, 13th European Conf. On Solid-St. Transducers, den Haag, Holland, September 12—15, 1999, 3–6.

    Google Scholar 

  220. R. Puers, D. de Bruyker, A. Cozma, A novel combined redundant pressure sensor with self test function. Sensors and Actuators A, 60, 1997, 6871.

    Google Scholar 

  221. Z. Pruszkowski, J. Dziuban, A. Górecka-Drzazga, U. Lipowicz, Epoxy glue for positioned packaging of piezoresistive silicon pressure sensors (in Polish). Elektronika, 11, 1993, 19–20.

    Google Scholar 

  222. Pressure sensors for 100 kPa, catalogue card of the Institute of Electron Technology, Warsaw, Poland.

    Google Scholar 

  223. J. Dziuban, K.P. Friedel, The semi flip chip attachment of single or twin chips silicon piezoresistive pressure sensors. Proceed. 12th Europ. Microelectronics and Packaging Conf., 7—9 June, 1999, Harrogate, England, 61–67.

    Google Scholar 

  224. J. Dziuban, K. Friedel, The silicon piezoresistive pressure sensor in the twin-chips configuration. Proceed. 4th Int. Workshop Elect. Cont. Measur. Signals, ECMS ’99 31st May—1st June, 1999, Liberec, Czech Rep., 31–34.

    Google Scholar 

  225. J. Dziuban, K. Friedel, A. Chotomski, The thermo-mechanical modelling of piezoresistive pressure sensors in the single or twin-chips configuration. Proceed. XXIII Conf. Int. Microel. and Packaging Soc. IMAPS, 21—23 Sept., 1999, Kolobrzeg, Poland, 257–262.

    Google Scholar 

  226. R. Puers, E. van den Bossche, W. Sansen, A capacitive pressure sensor with low impedance and active suppression of parasitic effect. Sensors and Actuators A, 21-23, 1990, 108–114.

    Google Scholar 

  227. H. Sander, J. Knutti, J. Meindl, A monolithic capacitive pressure sensor with pulse period output. IEEE Tran. El. Dev., ED-17, 1990, 927–930.

    Google Scholar 

  228. R. Puers, S. Vergote, A subminature capacitive moment detector using a composite membrane suspension. Sensors and Actuators A, 31, 1992, 90–96.

    Google Scholar 

  229. R. Puers, G. Blasquez, Low cost high-sensitivity integrated pressure and temperature sensor. Sensors and Actuators A, 41-42, 1994, 338–401.

    Google Scholar 

  230. X. Chauffer, G. Blasquez, P. Pous, Influence of the bonding conditions on the response of capacitive pressure sensors. Sensors and Actuators A, 46-47, 1995, 121–124.

    Google Scholar 

  231. J. Dziuban, R. Walczak, Etching microwave silicon [EMSi]-microwave enhanced fast anisotropic etching of silicon for electromechanical systems [MEMS]. Sensors and Materials, 1, 2001, 041–045.

    Google Scholar 

  232. J. Dziuban, R. Walczak, A silicon capacitive pressure sensor micromachined by EMSi method. Proceed. of the 12th Micromechanics Europe Workshop MME 2001, 16—18 Sept., 2001, Cork, Ireland, 123–127.

    Google Scholar 

  233. Górecka-Drzazga, J. Dziuban, S. Bargiel, Fibre-optic micromechanical pressure sensor (in Polish). Proceed. VI Conf. Optoelectronics and Electronics Sensors, COE 2000, 2, 144–149.

    Google Scholar 

  234. M. Mehregany, Silicon microactuators in advanced actuators, A.P. Dorey, J.H. Moore (eds.). Institute of Physics Publishing, Bristol-Philadelphia.

    Google Scholar 

  235. H. Suzuki, Shell body fabrication for micromachines. J. Micromech. Microeng., 5, 1995, 36–40.

    Google Scholar 

  236. M. Mehregany, K. Gabriel, W. Trimmer, Microgears and turbines etched from silicon. Sensors and Actuators A, 12(4), 1987, 341–348.

    Google Scholar 

  237. L. Fau, S. Woodman, Batch fabrication of mechanical platforms for high density data storage. Eurosensors IX, Stockholm, Sweden, 25—29 June, 1995, 434–437.

    Google Scholar 

  238. J. Dziuban, A. Górecka-Drzazga, Silicon microturbines for liquids flow sensors. Eurosensors X, 10th European Conf. on Solid-St. Transd. 8—11 September, Leuven, Belgium, 1996, 457–460.

    Google Scholar 

  239. Shoji. M. Esashi, Photoetching and electrochemical discharge drilling of Pyrex glass. Tech. Dig. 9th Sensor Symp., 1990, 27–30.

    Google Scholar 

  240. A. Manz, N. Graber, H.M. Widmer, Miniaturized total chemical analysis systems, a novel concept for chemical sensing. Sensors and Actuators B, 1, 1990, 244–248.

    Google Scholar 

  241. P. Bergveld, The challenge of developing μTAS. μTAS 94, Twente 1994, 1–4.

    Google Scholar 

  242. A. Manz, S. Verpoorte, D.E. Raymond, C.S. Effenhauser, N. Burrgrat, H.M. Widmer, μTAS: miniaturised total chemical analysis systems. μTAS 94, Twente 1994, 5–23.

    Google Scholar 

  243. A. Okumura, Y. Miyahara, M. Sakairi, Integrated chemical analysis systems as a step toward ionoelectronics. μTAS 96, Basel 1996, 22–23

    Google Scholar 

  244. J.M. Ramsey, Miniature chemical measurement systems. μTAS 96, Basel 1996, 24–27.

    Google Scholar 

  245. Proceedings of μTAS Conferences in years 1994—2004

    Google Scholar 

  246. A. Götz, C. Cané, I. Grâcia, E. Lora-Tamayo, A sensor chip for biomedical analysis. μTAS 96. Bazel 1996, 211–213.

    Google Scholar 

  247. S. Shoji, H. Huruya, T. Ohori, Micromachined micro flow devices for a medical μTAS. μTAS 96, Bazel 1996, 61–64.

    Google Scholar 

  248. H.T.G. van Linten, F.C.M. van den Pol, S. Bouwstra, A piezoelectric micropump based on micromachining of silicon. Sensors and Actuators A, 15, 1988, 153–167.

    Google Scholar 

  249. J.G. Smits, Piezoelectric pump with three valves working peristatically. Sensors and Actuators A, 21-23, 1990, 203–206.

    Google Scholar 

  250. T. Gerlach, A simple micropump employing dynamic passive valves made in silicon. MST 94, Berlin 1994, 1025–1034.

    Google Scholar 

  251. S.W. Lee, O.C. Jong, S.S. Yong, The fabrication of microinjector actuated by boiling and (or) electrolysis. IEEE Work. MME Systems, Heidelberg 1998, Proceed., 51–56.

    Google Scholar 

  252. K. Miura, S. Shoji, Fabrication of injection and switching valve for whole blood control. Proceed. μTAS98 Workshop, Bauff, Can., Kluwer Ac. Publishers, ed: D.J. Harrison, A. van den Berg, 1998, 85–88.

    Google Scholar 

  253. S. Shoji, S. Nakagawa, M. Esashi, Micropump and sample-injector for integrated chemical analysis systems. Sensors and Actuators A, 21-23, 1990, 185–192.

    Google Scholar 

  254. S. Kamisuki, T. Hagata, C. Tezuka, Y. Nase, M. Fuji, M. Atabe, A low power small electrostaticall-driven commercial ink-jet head. IEEE Work. MME Systems, Heidelberg 1998, Proceed. 63–68.

    Google Scholar 

  255. G.J. Schaubmueller, M. Koch, A.G.R. Evans, A. Braunnschweiler, Micromachined chemical reaction system realised on a microfluidic circuit board. Eurosensors XII. Proceed. 12th Europ. Conf. on Solid St. Transducers Southampton, 13—16 Sept., 1998, N.M. White (ed.). IOP Publishing 1998, Vol. 2, 571–574.

    Google Scholar 

  256. C. Terry, A gas chromatographic air analyser fabricated on silicon wafer. IEEE Tran. El. Dev., ED-26(2), 1978, 1880–1886.

    Google Scholar 

  257. www.mtigc.com.

    Google Scholar 

  258. Catalogue of MTI Analytical Instruments, MTI’s P200 Gas Chromatograph 1995/1996, Microsensors Technology Inc. 41762 Christy Street Fremont, CA 94538, USA.

    Google Scholar 

  259. J. van Kuijk, T.S.J. Lammerinck, H.E. de Bree, M. Elwenspoek, J.H.J. Fluitman, Multiparameter in fluid flows. Sensors and Actuators A, 46-47, 1995, 365–372.

    Google Scholar 

  260. T.S.J. Lammerinck, F. Dijkstra, Z. Hoker, J. van Kujik, Intelligent gas-mixture flow sensor. Sensors and Actuators A, 46-47, 1995, 380–386.

    Google Scholar 

  261. A. Olsson, P. Enohsonn, G. Stemme, E. Stemme, A valve-less planar pump isotropically etched in silicon. J. Micromech. Microeng., 6, 1996, 87–91.

    Google Scholar 

  262. A. Olson, G. Stemme, E. Stemme, A valve-less planar fluid pump chambers. Sensors and Actuators A, 46-47, 1995, 549–556.

    Google Scholar 

  263. K. Małecki, J. Dziuban, A. Górecka-Drzazga, A silicon valve-less pump IC compatible technology. MST News Poland, 3, 1997, 5–8.

    Google Scholar 

  264. J. Dziuban, A. Górecka-Drzazga, Ł. Nieradko, K. Małecki, Silicon components for gas chromatography. Proceed. Eurosensors XIV, 14th Europ. Conf. on Solid-St. Trancducers. Copenhagen, Denmark, August 27—30, 2000, 55–58.

    Google Scholar 

  265. J.A. Dziuban, J. Mróz, M. Szczygielska, M. Małachowski, A. Górecka-Drzazga, R. Walczak, W. Buła, D. Zalewski, Ł. Nieradko, J. Łysko, J. Koszur, P. Kowalski, Portable gas chromatograph with integrated components. Sensors and Actuators A, 115, 2004, 318–330.

    Google Scholar 

  266. J. Dziuban, A. Górecka-Drzazga, K. Małecki, Ł. Nieradko, J. Mróz, M. Szczygielska, Silicon components for gas chromatograph. Mat. SPIE, 4516, 2001, 247–257.

    Google Scholar 

  267. J. Mróz, M. Sczygielska, J. Dziuban, A. Górecka-Drzazga, Laboratory model of gas microchromatograph-construction and testing. Mat. SPIE, 4516, 2001, 258–266.

    Google Scholar 

  268. S.C Jakeway. A.J. de Mello, E.I Russel, Miniaturized total analysis systems for biological analysis. J. Anal. Chem., 366, 2000, 525–539.

    Google Scholar 

  269. P. Dario, M.C. Carozza, A. benvenuto, A. Menciassi, Micro-systems in biomedical applications. J. Micromech. Microeng., 10, 2000, 235–244

    Google Scholar 

  270. A. Manz, Micromachining of noncrystalline silicon and glass for chemical analysis systems: A look into the next century’s technology or just a fashionable erase? Tren. Anal. Chemistry, 10, 1991, 144–148.

    Google Scholar 

  271. J. Harrison, A. Manz, Z. Fan, H. Lüdi, H.M. Widmer, Capillary electrophoresis: and sample injection systems integrated on a planar glass chip. Anal. Chemistry, 64, 1992, 1926–1932.

    Google Scholar 

  272. J. Harrison, K. Fluri, Z. Fan, K. Seiler, Integration of analytical systems incorporating chemical reactions and electrophoretic separation. μTAS 94, Twente 1994, 105–115.

    Google Scholar 

  273. K. Seiler, D.J. Harrison, A. Manz, Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation and separation efficiency. Anal. Chemistry, 65, 1993, 1481–1488.

    Google Scholar 

  274. J. Dziuban, A. Górecka-Drzazga, Ł. Nieradko, J. Mróz, Silicon microcolumns for FIA chromatography. μTAS 96, Basel 1996, 946–953.

    Google Scholar 

  275. J. Dziuban, A. Górecka-Drzazga, Ł. Nieradko, J. Mróz, Silicon integrated capillary for μTAS. MST News, 1(5), 1997, 8–11.

    Google Scholar 

  276. J. Dziuban, A. Górecka-Drzazga, Ł. Nieradko, J. Mróz, Micromachined silicon microcolumns for FIA chromatography with anodic bonding inlets and outlets. The 192nd Electrochemical Meeting Paris 1997. ECH Proceed., PV 97-19, 946–953.

    Google Scholar 

  277. J. Dziuban, A. Górecka-Drzazga, Ł. Nieradko, J. Mróz, IC process compatible technology of silicon integrated capillary column fabrication. Eurosensors XI Proceed. 11th Europ. Conf. on Solid St. Transducers, Warsaw, 21—24 September 1997, Vol. 3, 3PI2, 1291–1295.

    Google Scholar 

  278. J. Dziuban, Z. Najzarek, Technological aspects of integrated chemical throughput synthesing and analysing microsystems development. Int. Meet. Chem. Eng., Env. Prot. and Biotech., ACHEMA 2000, Frankfurt am Main, 22—27 May, 2000, 164–165.

    Google Scholar 

  279. P. Salomon, Bio-MEMS and microfluidic demonstrate their potential at the Transducer 99. MST News, 3/99, 27.

    Google Scholar 

  280. A. Gretillat, F. Paoletti, P. Thiébaud, S. Roth, M. Koudelka-Hep, N.F. de Roji, A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sensors and Actuators A, 60, 1997, 219–222.

    Google Scholar 

  281. L. Nieradko, Integrated microcolumn for gas chromatograph. Thesis, The Faculty of Microsystem Electronics and Photonics of the Wroclaw University of Technology, 2000.

    Google Scholar 

  282. J. Janca, Micro-channel thermal Field-Flow-Fractionation; new challenge in analysis of macromolecules and particles. J. Liq. Chromatogr. & Rel. Technol., 25(5), 2002, 683–704.

    Google Scholar 

  283. T.I. Edwards, B.K. Gale, A.B. Frazier, A micromachined thermal field-flow fractionation system, proc. Transducers ’99, Intern. Conf. Solid.-St. Sensors and Actuators, Sendai, Japan, June 7—11, 1999.

    Google Scholar 

  284. S. Bargiel, A. Górecka-Drzazga, J.A. Dziuban, A micromachined system for the separation of molecules using thermal field-flow fractionation method. Sensors and Actuators A, 110, 2004, 328–325.

    Google Scholar 

  285. S. Bargiel, A. Górecka-Drzazga, J.A. Dziuban, P. Prokaryn, M. Chudy, A. Dybko, Z. Brzózka, Nanoliter detectors for flow systems. Sensors and Actuators A, 115, 2004, 245–251.

    Google Scholar 

  286. Li-A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, J. Kitching, Microfabricated alkali atom vapor cells. Appl. Physics. Lett., 84(14), 2004, 2694–2696.

    Google Scholar 

  287. C. Gorecki, S. Khalfallah, H. Kawakatsu, Y. Arakawa, New SNOM sensor using optical feedback in a VCSEL-based compound-cavity. Sensors and Actuators A, 87, 2001, 113–123.

    Google Scholar 

  288. D.W. de Lima, o.Akhzar-Mehr, P.M. Sarro, G. Vdovin, Single mask microfabrication of aspherical optics using KOH anisotropic etching of Si. Optics Express, Sept., 2003.

    Google Scholar 

  289. R. Carrasco, J.A. Dziuban, I. Moreno, C. Gorecki, R. Walczak, M. Kopytko, L. Nieradko, M. Jozwik, Optical microlenses for MEMS. Proceed. Microtechn. New. Millenium, 9—11 May, Seville, Spain, 2005.

    Google Scholar 

  290. H. H. Busta, Vacuum microelectronics 1992. Review, J. Micromech. Microeng., 2, 1992, 43–74.

    Google Scholar 

  291. J. Dziuban, A. Górecka-Drzazga, On process silicon microemitters with sharp tips. MST New Poland, 1996, 6–11A.

    Google Scholar 

  292. Spindt, FEA’s state of art and applications. Proceed. 2nd IWVM of 12th IVMC, Wroclaw-Darmstadt, invited lecture.

    Google Scholar 

  293. M. Nakamoto, United States Patent, no 5499938, March 19, 1996.

    Google Scholar 

  294. M. Nakamoto, K. Fukuala, Versatile field emitter arrays fabricated by transfer mold technique. Proceed. 12th Int. Vacuum Microel. Conf., 10—13 July 1999, 17–20.

    Google Scholar 

  295. J. Dziuban, A. Górecka-Drzazga, E. Prociów, SiC field emitters array fabricated by transfer MOLD technique. Proceed. 12th Int. Vacuum Microel. Conf., 6—9 July 1999, Darmstadt, Germany, 31–37.

    Google Scholar 

  296. Górecka-Drzazga, J. Dziuban, E. Prociów, SiC field emitters array fabricated by transfer MOLD technique. J. Vac. Sc. Techn. B, 18(2), 2000, 1–4.

    Google Scholar 

  297. J. Dziuban, A. Górecka-Drzazga, MOLD type FEA’s fabrication by use of fast silicon etching. J. Vac. Sc. Techn. B, 19(3), 2001, 897–899.

    Google Scholar 

  298. A. Gorecka-Drzazga, J. Dziuban, W. Drzazga, Mold-type SiC field emitters with heavily boron-doped gates. J. Micromech. Microeng., 14, 2004, 907–913

    Google Scholar 

  299. A. Gorecka-Drzazga, J. Dziuban, S. Bargiel, Mold-type SiC emitters with nano-holes at the apex. J. Meas. Sci. Technol., 17, 2006, 45–49.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Bonding. In: Bonding in Microsystem Technology. Springer Series in Advanced Microelectronics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4589-1_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4589-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4578-3

  • Online ISBN: 978-1-4020-4589-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics