Advertisement

ARC DISCHARGE AND LASER ABLATION SYNTHESIS OF SINGLEWALLED CARBON NANOTUBES

Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 222)

Abstract

The laser ablation synthesis of carbon nanotubes is contrasted with the arc discharge method with respect to the synthesis product. A novel combination of two laser systems of different wavelengths for the laser ablation synthesis is presented. The impact of sulfur on the synthesis process is discussed. An excerpt of our quality control protocol is presented.

Keywords

Laser Ablation Plasma Enhance Chemical Vapor Deposition Quality Control Protocol Microwave Plasma Chemical Vapor Deposition Narrow Diameter Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993).CrossRefGoogle Scholar
  3. 3.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993).CrossRefGoogle Scholar
  4. 4.
    W. Krätschmer, L. O. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature 347, 354–358 (1990).CrossRefGoogle Scholar
  5. 5.
    Y. L. Hsin, K. C. Hwang, F.-R. Chen, and J.-J. Kai, Production and in-situ metal filling of carbon nanotubes in water, Advanced Materials 13(11), 830–833 (2001).CrossRefGoogle Scholar
  6. 6.
    H. W. Zhu, X. S. Li, B. Jiang, C. L. Xu, Y. F. Zhu, D. H. Wu and X. H. Chen Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 366, 664–669 (2002).CrossRefGoogle Scholar
  7. 7.
    H. Lange, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto and D. R. M. Walton, Nanaocarbon production by arc discharge in water, Carbon 41, 1617–1623 (2003).CrossRefGoogle Scholar
  8. 8.
    L. P. Biro, Z. E. Horváth, L. Szalmás, K. Kertész, F. Wéber, G. Juhász, G. Radnoczi and J. Gyulai, Continuous carbon nanotube production in underwater AC electric arc, Chemical Physics Letters 372, 399–402 (2003).CrossRefGoogle Scholar
  9. 9.
    Ch. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters 77 2767–2769 (2000).CrossRefGoogle Scholar
  10. 10.
    M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, Growth Process Conditions of Vertically Aligned Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition, J. Appl. Phys. 90(10), 5308–5317 (2001).CrossRefGoogle Scholar
  11. 11.
    L. Delzeit, C. V. Nguyen, R. M. Stevens, J. Han, and M. Meyyappan, Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy, Nanotechnology 13, 280–284 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Han, J.-B. Yoo, C. Y. Park, H.-J. Kim, G. S. Park, M. Yang, I. T. Han, N. Lee, W. Yi, S. G. Yu, and J. M. Kim, Tip Growth Model of Carbon Tubules Grown on the Glass Substrate by Plasma Enhanced Chemical Vapor Deposition, J. Appl. Phys. 91, 483–486 (2002).CrossRefGoogle Scholar
  13. 13.
    T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, 49–54 (1995).CrossRefGoogle Scholar
  14. 14.
    M. E. Itkis, D. E. Perea, S. Niyogi, J. Love, J. Tang, A. Yu, C. Kang, R. Jung, and R. C. Haddon, Optimization of the Ni-Y Catalyst Composition in Bulk Electric Arc Synthesis of Single-Walled Carbon Nanotubes by Use of Near-Infrared Spectroscopy, J. Phys. Chem. B 108, 12770–12775 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G.-S. Park, and Y. H. Lee, Low pressure synthesis of single-walled carbon nanotubes by arc discharge, Synthetic Metals 126, 245–251 (2002).CrossRefGoogle Scholar
  16. 16.
    C. Liu, H. M. Cheng, H. T. Cong, F. Li, G. Su, B. L. Zhou, M. S. Dresselhaus. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes, Advanced Materials 12, 1190–1192 (2000).CrossRefGoogle Scholar
  17. 17.
    H. W. Zhu, B. Jiang, C. L. Xu, and D. H. Wu, Synthesis of High Quality Single-walled Carbon Nanotube Silks by the Arc-discharge Technique, J. Phys. Chem. B 107, 6514–6518 (2003).CrossRefGoogle Scholar
  18. 18.
    L. Alvarez, T. Guillard, J. L. Sauvajol, G. Flamant, and D. Laplaze, Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and Raman spectroscopy, Appl. Phys. A 70(2), 169–173 (2000); L. Alvarez L., Guillard T., Sauvajol, G. Flamant, and D. Laplaze, Growth mechanisms and diameter evolution of single wall carbon nanotube, Chem. Phys. Lett. 342, 7–14 (2001).CrossRefGoogle Scholar
  19. 19.
    S. Lebedkin, P. Schweiss, B. Renker, S. Malik, F. Hennrich, M. Neumaier, C. Stoermer, and M. M. Kappes, Single-wall Carbon Nanotubes with Diameters Approaching 6 nm Obtained by Laser Vaporization, Carbon 40, 417–423 (2002).CrossRefGoogle Scholar
  20. 20.
    C.-H. Kiang, W. A. Goddard III, R. Beyers, J. R. Salem, D. S. Bethune, Catalytic Synthesis of Single-Layer Carbon Nanotubes with a Wide Range of Diameters, J. Phys. Chem. 98, 6612–6618 (1994).CrossRefGoogle Scholar
  21. 21.
    M. Haluska, V. Skakalova, D. L. Carroll, and Z. Roth, The Influence of Sulfur Promoter on the Production of SWCNTs by the Arc-Discharge Process, in: Electronic Properties of Novel Materials, H. Kuzmany, J. Fink, M. Mehring, S. Roth (eds.), American Institute of Physics, New York, 2005, AIP Conference Proceedings, in print.Google Scholar
  22. 22.
    W. K. Maser, E. Munoz, M. T. Martinez, A. M. Benito, and G. F. de la Fuente, Study of parameters important for the growth of single wall carbon nanotubes, Opt. Mater. 17, 331–334 (2001).CrossRefGoogle Scholar
  23. 23.
    E. Munoz, W. K. Maser, A. M. Benito, M. T. Martinez, G. F. de la Fuente, Y. Maniette, A. Righi, E. Anglaret, and J. L. Sauvajol, Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation, Carbon 38, 1445–1451 (2000).CrossRefGoogle Scholar
  24. 24.
    E. Munoz, W. K. Maser, A. M. Benito, M. T. Martinez, G. F. de la Fuente, A. Righi, E. Anglaret, and J. L. Sauvajol, The influence of the target composition in the structural characteristics of single walled carbon nanotubes produced by laser ablation, Synth. Metals 121, 1193–1194(2001).CrossRefGoogle Scholar
  25. 25.
    A. P. Bolshakov, S. A. Uglov, A. V. Saveliev, V. I. Konov, A. A. Gorbunov, W. Pompe, and A. Graff, A novel CW laser-powder method of carbon single-wall nanotubes production, Diam. Rel. Mater. 11, 927–930 (2002).CrossRefGoogle Scholar
  26. 26.
    W. K. Maser, A. M. Benito, E. Muñoz, G. M. de Val, M. T. Martínez, Á. Larrea, and G. F. de la Fuente, Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials, Nanotechnology 12, 147–151 (2001).CrossRefGoogle Scholar
  27. 27.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273, 483–487 (1996).Google Scholar
  28. 28.
    A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A 67, 29–37 (1998).CrossRefGoogle Scholar
  29. 29.
    Ch. T. Kingston, Z. J. Jakubek, S. Denommee, and B. Simard, Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume, Carbon 42, 1657–1664 (2004).CrossRefGoogle Scholar
  30. 30.
    U. Dettlaff-Weglikowska, J. Wang, J. Liang, B. Hornbostel, and S. Roth, Purity Evaluation of Bulk Single Wall Carbon Natotube Materials, in: Electronic Properties of Novel Materials H. Kuzmany, J. Fink, M. Mehring, S. Roth (eds.), American Institute of Physics, New York, 2005, AIP Conference Proceedings, in print.Google Scholar
  31. 31.
    M. E. Itkis, D. Perea, S. Niyogi, S. Rickard, M. Hamon, H. Hu, B. Zhao, and R. C. Haddon, Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution Phase Near-IR Spectroscopy, Nano Lett. 3, 309–314 (2003).CrossRefGoogle Scholar
  32. 32.
    W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G. F. de la Fuente, Y. Maniette, E. Anglaret, and J.-L. Sauvajol, Production of high-density single-walled nanotube material by a simple laser-ablation method, Chem. Phys. Lett. 292, 587–593 (1998).CrossRefGoogle Scholar
  33. 33.
    F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, Emission Imaging Spectroscopic and Shadow graphic Studies on the Growth Dynamics of Graphitic Carbon Particles Synthesized by CO2 Laser Vaporization, J. Phys. Chem. 103, 8686–8693 (1999).Google Scholar
  34. 34.
    This protocol is a guidance for sample characterization and quality control within the SPANG consortium. It is hoped that by applying this protocol, reproducible results will be obtained at the different laboratories. To facilitate cooperation with other consortia and quite general with colleagues worldwide, the protocol is also spread outside the EU project SPANG. The protocol is regularly updated. We appreciate any interest for the protocol and any feedback from colleagues working in the field.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Max-Planck-Institute for Solid-State ResearchStuttgartGermany

Personalised recommendations