Skip to main content

THE ELASTIC MODULUS AND THE THERMAL EXPANSION COEFFICIENT OF PARTICULATE COMPOSITES USING A DODECAHEDRIC MULTIVARIANT MODEL

  • Conference paper
IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials

Part of the book series: SOLID MECHANICS AND ITS APPLICATIONS ((SMIA,volume 135))

  • 974 Accesses

Abstract

A theoretical model for the determination of the elastic modulus and thermal expansion coefficient of particulate composites is presented in this work. This model takes into consideration the influence of neighboring spherical particles on the thermomechanical constants of the composite material consisting of matrix and filler. A microstructural dodecahedric composite model which represents the basic cell of the composite at a microscopic scale was transformed to a 4-phase spherical representative volume element (RVE) in order to apply the classical theory of elasticity to this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. L.E. Nielsen, Mechanical Properties of Polymers and Composites, 2, Marcel Dekker Inc., New York, 1974.

    Google Scholar 

  2. E.H. Kerner, Proc. Phys. Soc., B69, 808 (1956).

    Google Scholar 

  3. Z. Hashin and J. Shtrikman, J. Mech. Phys. Solids, 11, 127 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  4. Z. Hojo, W. Toyoshima, M. Tamura and N. Kawamura, Polym. Eng. Sci., 14, 604 (1974).

    Article  Google Scholar 

  5. H. Alter, J. Appl. Polym. Sci., 9, 1525 (1966).

    Article  Google Scholar 

  6. W.M. Baldin, Acta Mech., 6, 141 (1958).

    Google Scholar 

  7. S.K. Bhattacharya, S. Basu and S.K. De, J. Mat. Sci., 13, 2109 (1978).

    Article  Google Scholar 

  8. G. Landon, G. Lewis and G.F. Boden, J. Mat. Sci., 12, 1605 (1977).

    Article  Google Scholar 

  9. Y. Benveniste, Mech. Mater., 4, 197 (1985).

    Article  Google Scholar 

  10. Z. Hashin, Mech. Mater., 8, (1990).

    Google Scholar 

  11. A. Einstein, Über die von Molekularkinetischen theorie der Warme geförderten Bewegung von in Ruhenden, (1911). Flussigkeiten suspendten Teilchen, Ann Physic, 17,549 (1905). Eine neue Bestimmung der Molekuldimensionen, Ann Physic , 19, 289 (1906). Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekuldimensionen, 34, 591 (1911).

    Google Scholar 

  12. B. Paul, Trans. Miner. Inst. Mech. Eng., 36, 218 (1960).

    Google Scholar 

  13. G. Guth, J.Appl. Phys., 16, 20 (1945).

    Article  Google Scholar 

  14. H.M. Smallwood, J. Appl. Phys., 15, 758 (1944).

    Article  Google Scholar 

  15. R. Counto, Mag. Concr. Res., 16, 129 (1964).

    Google Scholar 

  16. K. Takahashi, M. Ikenda, K. Harakawa and K. Tanaka, J. Pol. Phys. Ed., 16, 415 (1978).

    Article  Google Scholar 

  17. R.A. Schapery, J. Comp. Mat., 2, 380 (1968).

    Google Scholar 

  18. W.D. Kingery, J. Amer. Ceram. Soc., 40, 351 (1957).

    Article  Google Scholar 

  19. G. Arthur and J.A. Coulson, J. Nucl. Mater., 13, 242 (1964).

    Article  Google Scholar 

  20. J.P. Thomas, General Dynamics, Fort Wporth, Tex., AD 287–826 (1960).

    Google Scholar 

  21. A.A. Fahmy and A.I. Ragai, J. Appl. Phys., 41, 5108 (1970).

    Article  Google Scholar 

  22. T.T. Wang and T.K. Kwei, J. Pol. Sci., A-2, 7, 889 (1969).

    Google Scholar 

  23. A. Malliaris and D.T. Turner, J. Appl. Phys., 42, 614 (1971).

    Article  Google Scholar 

  24. R.R. Tummala and A.L. Friedberg, J. Appl. Phys., 11(13), 5104 (1970).

    Article  Google Scholar 

  25. L. Nicolais, Pol. Eng. Sci., 11, 194 (1971).

    Article  Google Scholar 

  26. M. Schrager, J. Appl. Polym. Sci., 22, 2379 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Sideridis, E., Papadopoulos, G., Kytopoulos, V., Sadowski, T. (2006). THE ELASTIC MODULUS AND THE THERMAL EXPANSION COEFFICIENT OF PARTICULATE COMPOSITES USING A DODECAHEDRIC MULTIVARIANT MODEL. In: Sadowski, T. (eds) IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials. SOLID MECHANICS AND ITS APPLICATIONS, vol 135. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4566-2_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4566-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4565-3

  • Online ISBN: 978-1-4020-4566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics