Advertisement

GENERALIZED DIABATIC STUDY OF ETHYLENE “ISOMERISM“

  • O. TAPIA
  • V. POLO
  • J. ANDRES
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

The generalized electronic diabatic (GED) approach is used to study a cis-trans isomerization process. At variance with standard Born-Oppenheimer approach, where a unique adiabatic potential energy function depending of a dihedral angle connects both isomers, a configuration interaction model permits describing isomerization process with four diabatic electronic states. These GED states form a minimal CI space; each state conserves local symmetry properties along a properly defined reaction coordinate. The diabatic states diagonalize the Coulomb Hamiltonian. The state mixing obtains via kinematic couplings, electron-phonon and spin-orbit operators. The process is mapped to a full quantum mechanical linear superposition of diabatic states.

Keywords

Quantum State Real Space Nodal Plane Linear Superposition Electronic Localization Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born; K. Huang Dynamical theory of crystal lattices; Clarendon: Oxford (1954).Google Scholar
  2. 2.
    H. Meyer Ann.Rev.Phys.Chem. 53, 141 (2002).CrossRefGoogle Scholar
  3. 3.
    O. Tapia, in Quantum systems in chemistry and physics, Vol II: Advanced problems and complex systems; A. Hernandez-Laguna, J. Maruani, R. McWeeny, S. Wilson, eds; Kluwer: Dordrecht; pp 193–212 (2000).Google Scholar
  4. 4.
    O. Tapia, in New Trends in Quantum Systems in Chemistry and Physics; J. Maruani, S. Wilson, Y. G. Smeyers, eds.; Kluwer: Dordrecht, Vol. II; pp 23–47 (2000).Google Scholar
  5. 5.
    O. Tapia Adv.Quantum Chem. 40, 103 (2001).CrossRefGoogle Scholar
  6. 6.
    O. Tapia; G. A. Arteca Internet Electron.J.Mol.Des. 2, 454 (2003).Google Scholar
  7. 7.
    G. A. Arteca; O. Tapia J.Math. Chem. 35, 1 (2004).CrossRefGoogle Scholar
  8. 8.
    O. Tapia Int.J.Quantum Chem. 97, 637 (2004).CrossRefGoogle Scholar
  9. 9.
    O. Tapia Int.J.Quantum Chem. 99, 373 (2004).CrossRefGoogle Scholar
  10. 10.
    O. Tapia TN-10 Sept. 14, Submitted (2004).Google Scholar
  11. 11.
    O. Tapia; G. A. Arteca Adv.Quantum Chem. 47, 273 (2004).Google Scholar
  12. 12.
    G. A. Arteca; O. Tapia J.Math.Chem. 35, 159 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Weinberg The quantum theory of fields; Cambridge University Press: New York, Vol. 1 (1995).Google Scholar
  14. 14.
    L. E. Ballantine Quantum Mechanics: A modern development; World Scientific: Singapore (1998).Google Scholar
  15. 15.
    H. Primas Chemistry, quantum mechanics and reductionism; Springer-Verlag: Berlin, Vol. 24 (1981).Google Scholar
  16. 16.
    J. J. Sakurai Modern Quantum Mechanics; Benjamin/Cummings: Menlo Park (1994).Google Scholar
  17. 17.
    R. Pauncz Spin eigenfunctions; Plenum Press: New York (1979).Google Scholar
  18. 18.
    T. Kato Trans.Am.Math.Soc. 70, 195 (1951).CrossRefGoogle Scholar
  19. 19.
    G. Herzberg; E. Teller Z.Physik.Chem. B21, 410 (1933).Google Scholar
  20. 20.
    H. C. Longuet-Higgins Adv.Spectry. 2, 429 (1961).Google Scholar
  21. 21.
    Faraday Discussions (Royal Society of Chemistry) 127 (2004).Google Scholar
  22. 22.
    L. D. Landau; E. M. Lifshitz Quantum mechanics; Pergamon Press (1962).Google Scholar
  23. 23.
    M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; V. G. Zakrzewski; J. A. Montgomery Jr.; R. E. Stratmann; J. C. Burant; S. Dapprich; J. M. Millam; A. D. Daniels; K. N. Kudin; M. C. Strain; O. Farkas; J. Tomasi; V. Barone; M. Cossi; R. Cammi; B. Mennucci; C. Pomelli; C. Adamo; S. Clifford; J.Ochterski; G. A. Petersson; P. Y. Ayala; Q. Cui; K. Morokuma; D. K. Malick; A. D. Rabuck; K. Raghavachari; J. B. Foresman; J. Cioslowski; J. V. Ortiz; A. G. Baboul; B. B. Stefanov; G. Liu; A. Liashenko; P. Piskorz; I. Komaromi; R. Gomperts; R. L. Martin; D. J. Fox; T. Keith; M. A. Al-Laham; C. Y. Peng; A. Nanayakkara; C. Gonzalez; M. Challacombe; P. M. W. Gill; B. Johnson; W. Chen; M. W. Wong; J. L. Andres; C. Gonzalez; M. Head-Gordon; E. S. Replogle; J. A. Pople; Revision A.7 ed.; Gaussian, Inc.: Pittsburgh P. A. (1998).Google Scholar
  24. 24.
    B. Silvi; A. Savin Nature 371, 683 (1994).CrossRefGoogle Scholar
  25. 25.
    H. Köppel Faraday Discuss. 127, 35 (2004).CrossRefGoogle Scholar
  26. 26.
    A. W. Jasper; C. Zhu; S. Nangia; D. G. Truhlar Faraday Discuss. 127, 1 (2004).CrossRefGoogle Scholar
  27. 27.
    H.-J. Werner; P.J. Knowles http://www.molpro.net.

Copyright information

© Springer 2006

Authors and Affiliations

  • O. TAPIA
    • 1
    • 2
  • V. POLO
    • 3
  • J. ANDRES
    • 3
  1. 1.Department of Physical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Department of Physical ChemistryValencia UniversityBurjassotSpain
  3. 3.Department of Experimental SciencesJaume I UniversityCastellóSpain

Personalised recommendations