Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)


We propose a practicable method for describing linear dynamics of different finite Fermi systems. The method is based on a general selfconsistent procedure for factorization of the two-body residual interaction. It is relevant for diverse density- and current-dependent functionals and, in fact, represents the self-consistent separable random-phase approximation (RPA), hence the name SRPA. SRPA allows to avoid diagonalization of high-rank RPA matrices and thus dwarfs the calculation expense. Besides, SRPA expressions have a transparent analytical form and so the method is very convenient for the analysis and treatment of the obtained results. SRPA demonstrates high numerical accuracy. It is very general and can be applied to diverse systems. Two very different cases, the Kohn-Sham functional for atomic clusters and Skyrme functional for atomic nuclei, are considered in detail as particular examples. SRPA treats both time-even and time-odd dynamical variables and, in this connection, we discuss the origin and properties of time-odd currents and densities in initial functionals. Finally, SRPA is compared with other self-consistent approaches for the excited states, including the coupled-cluster method.


Atomic Nucleus Atomic Cluster Collective Motion Random Phase Approximation Initial Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Row, Nuclear Collective Motion (Methuen, London, 1970).Google Scholar
  2. 2.
    P. Ring and Schuck, The Nuclear Many-Body Problems, (Springer-Verlag, Berlin, 1980).Google Scholar
  3. 3.
    R.M. Dreizler and E.K.U. Gross, Density Functional Theory: An approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990).Google Scholar
  4. 4.
    G.F. Bertsch and R. Broglia, Oscillations in Finite Quantum Systems (Cambridge University Press, Cambridge, 1994).Google Scholar
  5. 5.
    P.-G. Reinhard and E. Suraud, Introduction to Cluster Dynamics (Willey-VCH, Berlin, 2003).Google Scholar
  6. 6.
    P.-G. Reinhard and Y.K. Gambhir, Ann. Physik, 1 598 (1992).Google Scholar
  7. 7.
    V.O. Nesterenko, W. Kleinig, V.V. Gudkov, and N. Lo Iudice, Phys. Rev. A 56, 607 (1998);CrossRefGoogle Scholar
  8. 8.
    W. Kleinig, V.O. Nesterenko, and P.-G. Reinhard, Ann. Phys. (NY) 297, 1 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Kvasil, V.O. Nesterenko, and P.-G. Reinhard, in Proceed. of 7th Inter. Spring Seminar on Nuclear Physics, Miori, Italy, 2001, edited by A.Covello, World Scient. Publ., p.437 (2002); arXiv nucl-th/00109048.Google Scholar
  10. 10.
    V.O. Nesterenko J. Kvasil, and P.-G. Reinhard, Phys. Rev. C 66, 044307 (2002).CrossRefGoogle Scholar
  11. 11.
    T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956); D. Vauterin, D.M. Brink, Phys. Rev. C5, 626 (1972).Google Scholar
  12. 12.
    Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, and D. Vauterin, Nucl. Phys. A249, 215 (1975).CrossRefGoogle Scholar
  13. 13.
    G. Vignale and W. Kohn, Phys. Rev. Lett. 77 2037 (1996); G. Vignale, C.A. Ullrich and S. Conti, Phys. Rev. Lett. 79 4878 (1997).CrossRefGoogle Scholar
  14. 14.
    W. Kohn and L. Sham, Phys. Rev. 140 A1133 (1965).CrossRefGoogle Scholar
  15. 15.
    O. Gunnarson and B.I. Lundqvist, Phys. Rev. B13, 4274 (1976).Google Scholar
  16. 16.
    W. Kleinig, V.O. Nesterenko, P.-G. Reinhard, and Ll. Serra, Eur. Phys. J. D4, 343 (1998).Google Scholar
  17. 17.
    V.O. Nesterenko, W. Kleinig, and P.-G. Reinhard, Eur. Phys. J. D19, 57 (2002).Google Scholar
  18. 18.
    H. Haberland and M. Schmidt, Eur. Phys. J. D6, 109 (1999).Google Scholar
  19. 19.
    V.O. Nesterenko, J. Kvasil, P.-G. Reinhard, W. Kleinig, and P. Fleischer, Proc. of the 11-th International Symposium on Capture-Gamma-Ray Spectroscopy and Related Topics, ed. by J.Kvasil, P.Cejnar, M.Krticka, Prague, 2002, Word Scientific Singapore, p. 143 (2003).Google Scholar
  20. 20.
    M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).CrossRefGoogle Scholar
  21. 21.
    E. Lipparini and S. Stringari, Nucl. Phys. A371, 430 (1981).Google Scholar
  22. 22.
    O. Bohigas, A.M. Lane, J. Martorell, Phys. Rep. 51, 267 (1979).CrossRefGoogle Scholar
  23. 23.
    E. Lipparini ans S. Stringari, Phys. Rep. 175, 104 (1989).CrossRefGoogle Scholar
  24. 24.
    P.-G. Reinhard, N. Brack, O. Genzken, Phys.Rev. A 41, 5568 (1990).CrossRefGoogle Scholar
  25. 25.
    D.J. Thouless, Nucl. Phys. 21, 225 (1960).CrossRefGoogle Scholar
  26. 26.
    E. Lipparini and S. Stringari, Nucl. Phys. A371, 430 (1981).Google Scholar
  27. 27.
    T.Suzuki and H. Sagava, Prog. Theor. Phys.65, 565 (1981).CrossRefGoogle Scholar
  28. 28.
    T. Kubo, H. Sakamoto, T. Kammuri and T. Kishimoto, Phys. Rev. C54, 2331 (1996).Google Scholar
  29. 29.
    N. van Giai, Ch. Stoyanov and V.V. Voronov, Phys. Rev. C57, 1204 (1998).Google Scholar
  30. 30.
    C. Yannouleas and R.A. Broglia, Ann. Phys. (N.Y.), 217, 105 (1992).CrossRefGoogle Scholar
  31. 31.
    J. Babst, P.-G. Reinhard, Z. Phys. D42, 209 (1997).Google Scholar
  32. 32.
    R.J. Barlett, in “Modern Electronic Structure Theory”, ed. by D.R. Yakorny (World Scientific, Singapure, 1995) 1 p.1047.Google Scholar
  33. 33.
    J. Paldus and X. Li, Adv. Chem. Phys. 110, 1 (1999).Google Scholar
  34. 34.
    P. Piecuch, K. Kowalski, I.S.O. Pimienta, and M.J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002).CrossRefGoogle Scholar
  35. 35.
    P. Piecuch, K. Kowalski, P.-D. fan, and I.S.O. Pimienta, in “Progress in Theoretical Chemistry and Physics”, eds. J. Maruani, R. Lefebvre, and E. Brändas (Kluwer, Dordrecht, 2003), 12, 119.Google Scholar
  36. 36.
    P.-G. Reinhard, Ann. Phys. (Leipzig) 1, 632 (1992).Google Scholar
  37. 37.
    J. Dobaczewski and J. Dudek, Phys. Rev. C52, 1827 (1995).Google Scholar
  38. 38.
    E. Runge and E.K.U. Gross, Phys. Rev. Lett., 52, 997 (1984).CrossRefGoogle Scholar
  39. 39.
    H. Haberland and M. Schmidt, Eur. Phys. J. D6, 109 (1999).Google Scholar
  40. 40.
    D. Gogny, in Nuclear Self-Consistent Fields, eds. G. Ripka and M. Porneuf (North-Holland, Amsterdam, 1975).Google Scholar
  41. 41.
    A.B. Migdal, Theory of Finite Fermi Systems and Nuclei (Nauka, Moscow, 1983). Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 2
    • 3
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchMoscow regionRussia
  2. 2.Department of Nuclear PhysicsCharles UniversityCzech Republic
  3. 3.Institut für Theoretische PhysikUniversität ErlangenErlangenGermany

Personalised recommendations