Advertisement

EXCITED STATE SELF-CONSISTENT FIELD THEORY USING EVEN-TEMPERED PRIMITIVE GAUSSIAN BASIS SETS

  • V.N. GLUSHKOV
  • S. WILSON
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

A practical Hartree-Fock theory of atomic and molecular electronic structure is developed for individual electronically excited states that does not involve off-diagonal Lagrange multipliers. An easily implemented method for taking the orthogonality constraints into account, which has been proposed earlier by one of us, is used to impose the orthogonality of the Hartree-Fock excited state wave function of interest to states of lower energy. The applicability of systematic sequence of even-tempered basis sets with the orbital exponents, ζp, defined by the geometric series ζp = aβ p is examined in Hartree-Fock energy calculations for excited states which have the same spatial and spin symmetry as the ground state. It is shown that a simple reoptimization of the a and β parameters leads to a sequence of even-tempered basis sets capable of supporting high accuracy for excited state energies of some simple atoms.

Keywords

Excited State Excited State Energy Orthogonality Constraint Excited State Wave Function Excited State Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.R. Davidson and D.F. Feller, Chem. Rev. 86, 681 (1986)CrossRefGoogle Scholar
  2. 2.
    S. Wilson, Adv. Chem. Phys. 67, 439 (1987)Google Scholar
  3. 3.
    S. Wilson, in: New Methods in Quantum Theory, Ed. C.A. Tsipis, V.S. Popov, D.R. Herschbach and J.S. Avery, NATO ASI Series 3, V.8, p. 437–461, Kluwer Academic Publishers, Dordrecht, 1996Google Scholar
  4. 4.
    S. Wilson, in Handbook of Molecular Physics and Quantum Chemistry, 2, Molecular Electronic Structure, ed. S. Wilson, P.F. Bernath and R. McWeeny, Wiley, Chichester (2003)Google Scholar
  5. 5.
    T.H. Dunning, Jr., J. Chem .Phys. 90, 1007 (1989)CrossRefGoogle Scholar
  6. 6.
    J. Almlof and P.R. Taylor, J.Chem.Phys. 86, 4070 (1987)CrossRefGoogle Scholar
  7. 7.
    T. Helgaker and P.R. Taylor, in: Modern Electronic Structure Theory, Part 11, Ed. D. Yarkony, pp. 727–856, World Scientific (1995)Google Scholar
  8. 8.
    R.S. Raffenetti and K. Rudenberg, J. Chem. Phys. 59, 5978 (1973).CrossRefGoogle Scholar
  9. 9.
    M.W. Schmidt and K. Rudenberg, J. Chem. Phys. 71, 3951 (1979)CrossRefGoogle Scholar
  10. 10.
    E.S. Kryachko and S. Wilson, Int.J.Quant.Chem. 93, 112 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Kobus, D. Moncrieff and S. Wilson, J. Comp. Meth. Sci. & Eng. 4, 611 (2004)Google Scholar
  12. 12.
    D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 29, 6009 (1996)CrossRefGoogle Scholar
  13. 13.
    D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 28, 4007 (1995)CrossRefGoogle Scholar
  14. 14.
    D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 29, 2425 (1996)CrossRefGoogle Scholar
  15. 15.
    H.M. Quiney, I.P. Grant and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 23, L271 (1990)CrossRefGoogle Scholar
  16. 16.
    H.M. Quiney, V.N. Glushkov and S. Wilson, Int. J. Quantum Chem. 89, 227 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Shull and P.-O. Löwdin, Phys.Rev. 110, 1466 (1958)CrossRefGoogle Scholar
  18. 18.
    K. Anderssom and B.O. Roos, in: Modern Electronic Structure Theory, Part 11, Ed. D. Yarkony, pp. 55–109, World Scientific (1995)Google Scholar
  19. 19.
    K. Morokuma and S. Iwata, Chem. Phys. Lett. 16, 195 (1972)CrossRefGoogle Scholar
  20. 20.
    R. McWeeny, Molec. Phys. 28, 1273 (1974)Google Scholar
  21. 21.
    J. Mrozek and A. Golebiewski, Int. J. Quant. Chem. 12, 207 (1977)CrossRefGoogle Scholar
  22. 22.
    E.R.Davidson, L.Z. Stenkamp CF Int.J.Quant.Chem. (Symp). 10, 21.(1976)CrossRefGoogle Scholar
  23. 23.
    E.R. Davidson and E.L. McMurchie, in: Excited States 5, 1 (1985)Google Scholar
  24. 24.
    R. Colle, A. Fortunelli and O. Salwetti, Theor. Chim. Acta. 71, 467 (1987)CrossRefGoogle Scholar
  25. 25.
    N. Gidopoulos and A. Theophilou, Phil. Mag. 69, 1067 (1994)Google Scholar
  26. 26.
    A. Theophilou, J. Phys. C, 12, 5419 (1979)CrossRefGoogle Scholar
  27. 27.
    N. Gidopoulos, V.N. Glushkov and S. Wilson, Proc.R. Soc. Lond. A., 457, 1657 (2002)Google Scholar
  28. 28.
    V.N. Glushkov, A.Ya. Tsaune and Z. Vychisl, Matem. & Mat. Phys. 25, 298 (1985)Google Scholar
  29. 29.
    V.N. Glushkov, Opt. Spectrosc. 93, 15 (2002)CrossRefGoogle Scholar
  30. 30.
    V.N. Glushkov, J. Math. Chem. 31, 91 (2002)CrossRefGoogle Scholar
  31. 31.
    V.N. Glushkov and A.Ya. Tsaune, Opt. Spectrosc. 87, 267 (1999)Google Scholar
  32. 32.
    M. Cohen and P.S. Kelly, Can. J. Phys. 43, 1867 (1965)Google Scholar
  33. 33.
    H. Tatewaki, T. Koga, Y. Sakai and A.J. Thakkar, J. Chem. Phys. 101, 4945 (1994)CrossRefGoogle Scholar
  34. 34.
    V.N. Glushkov, Chem. Phys. Lett. 273, 122 (1997)CrossRefGoogle Scholar
  35. 35.
    V.N. Glushkov, Int. J. Quant. Chem. 99, 236 (2004)CrossRefGoogle Scholar
  36. 36.
    P.E. Gill and M. Murray, Numerical methods for constrained optimization, London. Academic Press (1978)Google Scholar
  37. 37.
    V.N. Glushkov, Chem. Phys. Lett. 287, 189 (1998)CrossRefGoogle Scholar
  38. 38.
    C. Froese, J. Chem. Phys. 47, 4010 (1967)CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • V.N. GLUSHKOV
    • 1
  • S. WILSON
    • 2
  1. 1.Department of PhysicsNational University of DnepropetrovskDnepropetrovskUkraine
  2. 2.Rutherford Appleton LaboratoryOxfordshireEngland

Personalised recommendations