Advertisement

NONITERATIVE COUPLED-CLUSTER METHODS FOR EXCITED ELECTRONIC STATES

  • PIOTR PIECUCH
  • MARTA LOCH
  • MARICRIS LODRIGUITO
  • JEFFREY R. GOUR
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

New classes of noniterative coupled-cluster (CC) methods, which improve the results of the standard equation-of-motion (EOM) and response CC calculations for excited states dominated by two-electron transitions and excited-state potential energy surfaces along bond breaking coordinates, are reviewed. All of the methods discussed in this article are derived from the method of moments of CC equations (MMCC) and all of them are characterized by the relatively low computer costs which are similar to those characterizing the popular ground-state CCSD(T) theory. Three types of approaches are discussed: (i) the externally corrected MMCC approaches employing the con.guration interaction and multi-reference perturbation theory wave functions, (ii) the completely renormalized EOMCC methods, including their most recent extension to excited states of radicals and other open-shell systems, and (iii) the new classes of MMCC and completely renormalized EOMCC theories employing the left eigenstates of the similarity-transformed Hamiltonian used in CC/EOMCC theory.

Keywords

Double Excitation Vertical Excitation Energy Triple Excitation Excitation Operator Excited Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Coester, Nucl. Phys. 7, 421 (1958).CrossRefGoogle Scholar
  2. 2.
    F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).CrossRefGoogle Scholar
  3. 3.
    J. Čížek, Chem. Phys. 45, 4256 (1966).CrossRefGoogle Scholar
  4. 4.
    J. Čížek, Adv. Chem. Phys. 14, 35 (1969).Google Scholar
  5. 5.
    J. Čížek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).CrossRefGoogle Scholar
  6. 6.
    R.J. Bartlett, in: Modern Electronic Structure Theory, Part I, edited by D.R. Yarkony (World Scientific, Singapore, 1995), pp. 1047–1131.Google Scholar
  7. 7.
    J. Gauss, in: Encyclopedia of Computational Chemistry, edited by P.v.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III, and P.R. Schreiner (Wiley, Chichester, U.K., 1998), Vol. 1, pp. 615-636.Google Scholar
  8. 8.
    J. Paldus and X. Li, Adv. Chem. Phys. 110, 1 (1999).Google Scholar
  9. 9.
    T.D. Crawford and H.F. Schaefer III, Rev. Comp. Chem. 14, 33 (2000).Google Scholar
  10. 10.
    J. Paldus, in: Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (Wiley, Chichester, 2003), Vol. 2, pp. 272–313.Google Scholar
  11. 11.
    G.D. Purvis III and R.J. Bartlett, J. Chem. Phys. 76, 1910 (1982).CrossRefGoogle Scholar
  12. 12.
    G.E. Scuseria, A.C. Scheiner, T.J. Lee, J.E. Rice, and H.F. Schaefer III, J. Chem. Phys. 86, 2881 (1987).CrossRefGoogle Scholar
  13. 13.
    G.E. Scuseria, C.L. Janssen, and H.F. Schaefer III, J. Chem. Phys. 89, 7382 (1988).CrossRefGoogle Scholar
  14. 14.
    T.J. Lee and J.E. Rice, Chem. Phys. Lett. 150, 406 (1988).CrossRefGoogle Scholar
  15. 15.
    P. Piecuch and J. Paldus, Int. J. Quantum Chem. 36, 429 (1989).CrossRefGoogle Scholar
  16. 16.
    M. Urban, J. Noga, S.J. Cole, and R.J. Bartlett, J. Chem. Phys. 83, 4041 (1985).CrossRefGoogle Scholar
  17. 17.
    P. Piecuch and J. Paldus, Theor. Chim. Acta 78, 65 (1990).CrossRefGoogle Scholar
  18. 18.
    K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).CrossRefGoogle Scholar
  19. 19.
    M. Schütz, J. Chem. Phys. 116, 8772 (2002).CrossRefGoogle Scholar
  20. 20.
    R.M. Olson, S. Varganov, M.S. Gordon, S. Chretien, H. Metiu, P. Piecuch, K. Kowalski, S.A. Kucharski, and M. Musial, J. Am. Chem. Soc. 127, 1049 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977).Google Scholar
  22. 22.
    E. Dalgaard and H. Monkhorst, Phys. Rev. A 28, 1217 (1983).CrossRefGoogle Scholar
  23. 23.
    M. Takahashi and J. Paldus, J. Chem. Phys. 85, 1486 (1986).CrossRefGoogle Scholar
  24. 24.
    H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).CrossRefGoogle Scholar
  25. 25.
    H. Koch, H.J.Aa. Jensen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).CrossRefGoogle Scholar
  26. 26.
    J. Geertsen, M. Rittby, and R.J. Bartlett, Chem. Phys. Lett. 164, 57 (1989).CrossRefGoogle Scholar
  27. 27.
    D.C. Comeau and R.J. Bartlett, Chem. Phys. Lett. 207, 414 (1993).CrossRefGoogle Scholar
  28. 28.
    J.F. Stanton and R.J. Bartlett, J. Chem. Phys. 98, 7029 (1993).CrossRefGoogle Scholar
  29. 29.
    P. Piecuch and R.J. Bartlett, Adv. Quantum Chem. 34, 295 (1999).CrossRefGoogle Scholar
  30. 30.
    H. Nakatsuji and K. Hirao, Chem. Phys. Lett. 47, 569 (1977).CrossRefGoogle Scholar
  31. 31.
    H. Nakatsuji and K. Hirao, J. Chem. Phys. 68, 2053, 4279 (1978).CrossRefGoogle Scholar
  32. 32.
    H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978).CrossRefGoogle Scholar
  33. 33.
    H. Nakatsuji, Chem. Phys. Lett. 67, 329, 334 (1979).CrossRefGoogle Scholar
  34. 34.
    H. Nakatsuji, in: Computational Chemistry: Reviews of Current Trends, edited by J. Leszczyński (World Scientific, Singapore, 1997), Vol. 2, pp. 62-124.Google Scholar
  35. 35.
    J.D. Watts and R.J. Bartlett, Chem. Phys. Lett. 233, 81 (1995).CrossRefGoogle Scholar
  36. 36.
    J.D. Watts and R.J. Bartlett, Chem. Phys. Lett. 258, 581 (1996).CrossRefGoogle Scholar
  37. 37.
    J.D. Watts and R.J. Bartlett, J. Chem. Phys. 101, 3073 (1994).CrossRefGoogle Scholar
  38. 38.
    H. Koch, O. Christiansen, P. Jørgensen, and J. Olsen, Chem. Phys. Lett. 244, 75 (1995).CrossRefGoogle Scholar
  39. 39.
    O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 103, 7429 (1995).CrossRefGoogle Scholar
  40. 40.
    O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 105, 1451 (1996).CrossRefGoogle Scholar
  41. 41.
    O. Christiansen, H. Koch, P. Jørgensen, and J. Olsen, Chem. Phys. Lett. 256, 185 (1996).CrossRefGoogle Scholar
  42. 42.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 8490 (2000).CrossRefGoogle Scholar
  43. 43.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 115, 643 (2001).CrossRefGoogle Scholar
  44. 44.
    K. Kowalski and P. Piecuch, Chem. Phys. Lett. 347, 237 (2001).CrossRefGoogle Scholar
  45. 45.
    A.I. Krylov, C.D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 6509 (2000).CrossRefGoogle Scholar
  46. 46.
    S. Hirata, J. Chem. Phys. 121, 51 (2004).CrossRefGoogle Scholar
  47. 47.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 115, 2966 (2001).CrossRefGoogle Scholar
  48. 48.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 116, 7411 (2002).CrossRefGoogle Scholar
  49. 49.
    P. Piecuch, K. Kowalski, I.S.O. Pimienta and M.J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002).CrossRefGoogle Scholar
  50. 50.
    P. Piecuch, K. Kowalski, I.S.O. Pimienta, and S.A. Kucharski, in: Low-Lying Potential Energy Surfaces, ACS Symposium Series, Vol. 828, edited by M.R. Hoffmann and K.G. Dyall (American Chemican Society: Washington, D.C., 2002), pp. 31–64.Google Scholar
  51. 51.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 120, 1715 (2004).CrossRefGoogle Scholar
  52. 52.
    P. Piecuch, K. Kowalski, I.S.O. Pimienta, P.-D. Fan, M. Lodriguito, M.J. McGuire, S.A. Kucharski, T. Kuś, and M. Musial, Theor. Chem. Acc. 112, 349 (2004).CrossRefGoogle Scholar
  53. 53.
    C.D. Sherrill and P. Piecuch, J. Chem. Phys. 122, XXX (2005), in press [to appearin April 1, 2005 issue].CrossRefGoogle Scholar
  54. 54.
    C.E. Smith, R.A. King, and T.D. Crawford, J. Chem. Phys. 122, 054110 (2005).CrossRefGoogle Scholar
  55. 55.
    M. Wloch, M. Musial, and S.A. Kucharski, Ann. Pol. Chem. Soc. 1, 255 (2001).Google Scholar
  56. 56.
    S.A. Kucharski, M. Wloch, M. Musial, and R.J. Bartlett, J. Chem. Phys. 115, 8263 (2001).CrossRefGoogle Scholar
  57. 57.
    M. Kállay and J. Gauss, J. Chem. Phys. 121, 9257 (2004).CrossRefGoogle Scholar
  58. 58.
    H. Larsen, J. Olsen, P. Jørgensen, and O. Christiansen, J. Chem. Phys. 113, 6677 (2000); 114, 10985 (2001) [Erratum].CrossRefGoogle Scholar
  59. 59.
    M. Wloch, J.R. Gour, K. Kowalski, and P. Piecuch, J. Chem. Phys., in press.Google Scholar
  60. 60.
    R.K. Chaudhuri, K.F. Freed, G. Hose, P. Piecuch, K. Kowalski, M. Wloch, S. Chattopadhyay, D. Mukherjee, Z. Rolik, Á. Szabados, G. Tóth, and P.R. Surján, J. Chem. Phys. 122, XXX (2005), in press [to appear in April 1, 2005 issue].Google Scholar
  61. 61.
    P. Piecuch and K. Kowalski, in: Computational Chemistry: Reviews of Current Trends, edited by J. Leszczyński (World Scientific, Singapore, 2000), Vol. 5, pp. 1-104.Google Scholar
  62. 62.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).CrossRefGoogle Scholar
  63. 63.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 5644 (2000).CrossRefGoogle Scholar
  64. 64.
    S. Coussan, Y. Ferro, M. Rajzmann, A. Trivella, P. Roubin, R. Wieczorek, P. Piecuch, K. Kowalski, M. Wloch, S.A. Kucharski, and M. Musial, in preparation for J. Phys. Chem. A. Google Scholar
  65. 65.
    K. Kowalski and P. Piecuch, Chem. Phys. Lett. 344, 165 (2001).CrossRefGoogle Scholar
  66. 66.
    P. Piecuch, S.A. Kucharski, and K. Kowalski, Chem. Phys. Lett. 344, 176 (2001).CrossRefGoogle Scholar
  67. 67.
    P. Piecuch, S.A. Kucharski, V. Špirko, and K. Kowalski, J. Chem. Phys. 115, 5796 (2001).CrossRefGoogle Scholar
  68. 68.
    P. Piecuch, K. Kowalski, and I.S.O. Pimienta, Int. J. Mol. Sci 3, 475 (2002).Google Scholar
  69. 69.
    M.J. McGuire, K. Kowalski, and P. Piecuch, J. Chem. Phys. 117, 3617 (2002).CrossRefGoogle Scholar
  70. 70.
    P. Piecuch, S.A. Kucharski, K. Kowalski, and M. Musial, Comp. Phys. Commun. 149, 71 (2002).CrossRefGoogle Scholar
  71. 71.
    I.S.O. Pimienta, K. Kowalski, and P. Piecuch, J. Chem. Phys. 119, 2951 (2003).CrossRefGoogle Scholar
  72. 72.
    P. Piecuch, K. Kowalski, P.-D. Fan, and I.S.O. Pimienta, in: Advanced Topics in Theoretical Chemical Physics, Vol. 12 of Progress in Theoretical Chemistry and Physics, edited by J. Maruani, R. Lefebvre, and E. Brändas (Kluwer, Dordrecht, 2003), pp. 119–206.Google Scholar
  73. 73.
    M.J. McGuire, K. Kowalski, P. Piecuch, S.A. Kucharski, and M. Musial, J. Phys. Chem. A 108, 8878 (2004).CrossRefGoogle Scholar
  74. 74.
    P.-D. Fan, K. Kowalski, and P. Piecuch, Mol. Phys., in press.Google Scholar
  75. 75.
    S. Hirata, P.-D. Fan, A.A. Auer, M. Nooijen, and P. Piecuch, J. Chem. Phys. 121, 12197 (2004).CrossRefGoogle Scholar
  76. 76.
    M.J. McGuire and P. Piecuch, J. Am. Chem. Soc. 127, 2608 (2005).CrossRefGoogle Scholar
  77. 77.
    K. Kowalski and P. Piecuch, J. Chem. Phys. 122, 074107 (2005).CrossRefGoogle Scholar
  78. 78.
    M. Lodriguito, K. Kowalski, M. Wloch, and P. Piecuch, in preparation for J. Chem.Phys. Google Scholar
  79. 79.
    P. Piecuch, M. Wloch, and J.R. Gour, in preparation for J. Chem. Phys. Google Scholar
  80. 80.
    K. Kowalski and P. Piecuch, J. Mol. Struct.: THEOCHEM 547, 191 (2001).CrossRefGoogle Scholar
  81. 81.
    P. Piecuch and K. Kowalski, Int. J. Mol. Sci. 3, 676 (2002).CrossRefGoogle Scholar
  82. 82.
    K. Kowalski and P. Piecuch, Mol. Phys. 102, 2425 (2004).CrossRefGoogle Scholar
  83. 83.
    S.A. Kucharski and R.J. Bartlett, Theor. Chim. Acta 80, 387 (1991).CrossRefGoogle Scholar
  84. 84.
    E.A. Salter, G.W. Trucks, and R.J. Bartlett, J. Chem. Phys. 90, 1752 (1989).CrossRefGoogle Scholar
  85. 85.
    J.D. Watts, J. Gauss, and R.J. Bartlett, J. Chem. Phys. 98, 8718 (1993).CrossRefGoogle Scholar
  86. 86.
    J. Gauss, W.J. Lauderdale, J.F. Stanton, J.D. Watts, and R.J. Bartlett, Chem. Phys. Lett. 182, 207 (1991).CrossRefGoogle Scholar
  87. 87.
    J. Gauss, J.F. Stanton, and R.J. Bartlett, J. Chem. Phys. 95, 2623 (1991).CrossRefGoogle Scholar
  88. 88.
    J. Gauss, J.F. Stanton, and R.J. Bartlett, J. Chem. Phys. 95, 2639 (1991).CrossRefGoogle Scholar
  89. 89.
    J. Gauss and J.F. Stanton, Phys. Chem. Chem. Phys. 2, 2047 (2000).CrossRefGoogle Scholar
  90. 90.
    J. Gauss and J.F. Stanton, J. Chem. Phys. 116, 1773 (2002).CrossRefGoogle Scholar
  91. 91.
    X. Li and J. Paldus, J. Chem. Phys. 115, 5759 (2001).CrossRefGoogle Scholar
  92. 92.
    X. Li and J. Paldus, J. Chem. Phys. 115, 5774 (2001).CrossRefGoogle Scholar
  93. 93.
    X. Li and J. Paldus, J. Chem. Phys. 117, 1941 (2002).CrossRefGoogle Scholar
  94. 94.
    X. Li and J. Paldus, J. Chem. Phys. 118, 2470 (2003).CrossRefGoogle Scholar
  95. 95.
    J. Paldus, J. Čížek, and M. Takahashi, Phys. Rev. A 30, 2193 (1984).CrossRefGoogle Scholar
  96. 96.
    P. Piecuch, R. Tobola, and J. Paldus, Phys. Rev. A 54, 1210 (1996).CrossRefGoogle Scholar
  97. 97.
    J. Paldus and J. Planelles, Theor. Chim. Acta 89, 13 (1994).Google Scholar
  98. 98.
    G. Peris, J. Planelles, and J. Paldus, Int. J. Quantum Chem. 62, 137 (1997).CrossRefGoogle Scholar
  99. 99.
    L. Stolarczyk, Chem. Phys. Lett. 217, 1 (1994).CrossRefGoogle Scholar
  100. 100.
    X. Li and J. Paldus, J. Chem. Phys. 107, 6257 (1997).CrossRefGoogle Scholar
  101. 101.
    X. Li and J. Paldus, J. Chem. Phys. 108, 637 (1998).CrossRefGoogle Scholar
  102. 102.
    X. Li and J. Paldus, Chem. Phys. Lett. 286, 145 (1998).CrossRefGoogle Scholar
  103. 103.
    J. Olsen, A.M. Sánchez de Meras, H.J.Aa. Jensen, and P. Jørgensen, Chem. Phys. Lett. 154, 380 (1989).CrossRefGoogle Scholar
  104. 104.
    I. Özkan, A. Kinal, and M. Balci, J. Phys. Chem. A 108, 507 (2004).CrossRefGoogle Scholar
  105. 105.
    A. Kinal and P. Piecuch, J. Am. Chem. Soc., submitted.Google Scholar
  106. 106.
    T.D. Crawford and H.F. Schaefer III, J. Chem. Phys. 104, 6259 (1996).CrossRefGoogle Scholar
  107. 107.
    K. Kowalski and P. Piecuch, unpublished.Google Scholar
  108. 108.
    W.J. Hehre, R. Ditchfield, and J.A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefGoogle Scholar
  109. 109.
    M. L. Abrams and C. D. Sherrill, J. Chem. Phys. 121, 9211 (2004).CrossRefGoogle Scholar
  110. 110.
    T.H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  111. 111.
    R.A. Kendall, T.H. Dunning Jr., and R.J. Harrison, J. Chem. Phys. 96, 6769 (1992).CrossRefGoogle Scholar
  112. 112.
    A. Kalemos, A. Mavridis, and A. Metropoulos, J. Chem. Phys. 111, 9536 (1999).CrossRefGoogle Scholar
  113. 113.
    M. Zachwieja, J. Mol. Spectrosc. 170, 285 (1995).CrossRefGoogle Scholar
  114. 114.
    T. Nelis, J.M. Brown, and K.M. Evenson, J. Chem. Phys. 92, 4067 (1990).CrossRefGoogle Scholar
  115. 115.
    R. Kepa, A. Para, M. Rytel, and M. Zachwieja, J. Mol. Spectrosc. 178, 189 (1996).CrossRefGoogle Scholar
  116. 116.
    K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).Google Scholar
  117. 117.
    D.H. Phelps and F.W. Dalby, Phys. Rev. Lett. 16, 3 (1966).CrossRefGoogle Scholar
  118. 118.
    A. Kasdan, E. Herbst, and W.C. Lineberger, Chem. Phys. Lett. 31, 78 (1975).CrossRefGoogle Scholar
  119. 119.
    T.C. Steimle, D.F. Nachman, D.A. Fletcher, and J.M. Brown, J. Mol. Spectrosc. 138, 222 (1989).CrossRefGoogle Scholar
  120. 120.
    D. Mukhopadhyay, S. Mukhopadhyay, R. Chaudhuri, and D. Mukherjee, Theor Chim. Acta 80, 441 (1991).CrossRefGoogle Scholar
  121. 121.
    L. Meissner and R.J. Bartlett, J. Chem. Phys. 94, 6670 (1991).CrossRefGoogle Scholar
  122. 122.
    L. Meissner and R.J. Bartlett, J. Chem. Phys. 102, 7490 (1995).CrossRefGoogle Scholar
  123. 123.
    S. Hirata, M. Nooijen, I. Grabowski and R.J. Bartlett, J. Chem. Phys. 114, 3919 (2001); 115, 3967 (2001) [Erratum].CrossRefGoogle Scholar
  124. 124.
    S.R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000).CrossRefGoogle Scholar
  125. 125.
    S.R. Gwaltney, C.D. Sherrill, M. Head-Gordon, and A.I. Krylov, J. Chem. Phys. 113, 3548 (2000).CrossRefGoogle Scholar
  126. 126.
    S.R. Gwaltney and M. Head-Gordon, J. Chem. Phys. 115, 2014 (2001).CrossRefGoogle Scholar
  127. 127.
    S.R. Gwaltney, E.F.C. Byrd, T. Van Voorhis, and M. Head-Gordon, Chem. Phys. Lett. 353, 359 (2002).CrossRefGoogle Scholar
  128. 128.
    M. Head-Gordon, T. Van Voorhis, S.R. Gwaltney, and E.F.C. Byrd, in: Low-Lying Potential Energy Surfaces, ACS Symposium Series, Vol. 828, edited by M.R. Hoffmann and K.G. Dyall (American Chemican Society, Washington, D.C., 2002), pp. 93-108.Google Scholar
  129. 129.
    J.F. Stanton, Chem. Phys. Lett. 281, 130 (1997).CrossRefGoogle Scholar
  130. 130.
    D.T. Crawford and J.F. Stanton, Int. J. Quantum Chem. 70, 601 (1998).CrossRefGoogle Scholar
  131. 131.
    S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 5243 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • PIOTR PIECUCH
    • 1
    • 2
  • MARTA LOCH
    • 1
  • MARICRIS LODRIGUITO
    • 1
  • JEFFREY R. GOUR
    • 1
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations