• J. A. ALONSO
  • A. RUBIO
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)


Boron nanostructures B96 in form of α-rhombohedral nanocrystals and of nanotubes with different diameters were first calculated at the Hartree-Fock Self-Consistent-Field level of theory to generate the electron density. The obtained HF-SCF density-matrix was used as initial input to solve the Kohn-Sham equations of the density functional theory with the Becke-Lee-Yang-Parr Exchange-Correlation Potentials (B3LYP). The total B3LYP energy of each supercluster was determined. The stability of B96 nanotubes at the B3LYP level seems to be similar to or higher than the stability of naturally existing α-boron.


NANOSTRUCTURED Material Average Bond Length Boron Cluster Armchair Nanotubes Rhombohedral Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Drexler, in Nanosystems; Molecular Machinery, Manufacturing, and Computation, Wiley-Interscience publication, New York (1992).Google Scholar
  2. 2.
    I. Boustani, Int. J. Quantum Chem., 52, 1081 (1994).CrossRefGoogle Scholar
  3. 3.
    I. Boustani, and A. Quandt, Europhys. Lett., 39, 527 (1997).CrossRefGoogle Scholar
  4. 4.
    I. Boustani, A. Quandt, E. Hernandez, and A. Rubio, J. Chem. Phys. 110, 3176 (1999).CrossRefGoogle Scholar
  5. 5.
    A. Ricca, and C. W. Bauschlicher, Chem. Phys. 208, 233 (1996).CrossRefGoogle Scholar
  6. 6.
    F. L. Gu, X. Yang, A. C. Tang, H. Jiao, and P. V. R. Schleyer, J. Compt. Chem. 19, 203 (1998).CrossRefGoogle Scholar
  7. 7.
    J. E. Fowler, and M. J. Ugalde, J. Phys. Chem. A 104, 397 (2000).CrossRefGoogle Scholar
  8. 8.
    P. L. Cao, W. Zhao, B. X. Li, B. Song, and X. Y. Zhou, J. Phys.: Condens. Matter 13, 5065 (2001).CrossRefGoogle Scholar
  9. 9.
    A. A. Shvartsburg, S. V. Mashkevich, and K. W. M. Siu, J. Phys. Chem. A 104, 9448 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Aihara, J. Phys. Chem. A 105, 5486 (2001).CrossRefGoogle Scholar
  11. 11.
    D. E. Bergeron, and A. W. Castleman, Jr., Int. J. Spectrometry 230, 71 (2003).CrossRefGoogle Scholar
  12. 12.
    H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, Nature Materials Vol. 2, 12, 827 (2003).CrossRefGoogle Scholar
  13. 13.
    A. Peeters, C. V. Van Alsenoy, N. H. March, D. J. Klein, and V. E. Van Doren, J. Phys. Chem. B 105, 10546 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Gindulyte, W. Lipscomb, and L. Massa Inorg. Chem. 37, 6544 (1998).CrossRefGoogle Scholar
  15. 15.
    D. Ciuparu, R. F. Klie, Y. Zhu, and Lisa Pfefferle, J. Phys. Chem. B 108, 3967 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Cao, Z. Zhang, L. Sun, C. Gao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang, and W. Wang, Adv. Mater., 13, 1701 (2001).CrossRefGoogle Scholar
  17. 17.
    C. J. Otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, and W. E. Buhro, J. Am. Chem. Soc., 124, 4564 (2001).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, H. Ago, M. Yumura, T. Komatsu, K. Uchida, and S. Iijima, Chem. Commun., 23, 2806 (2002).CrossRefGoogle Scholar
  19. 19.
    J. Z. Wu, S. H. Yun, A. Dibos, D.-K. Kim, and M. Tidrow, Microelectronics Journal 34, 463 (2003).CrossRefGoogle Scholar
  20. 20.
    X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 370, 825 (2003).CrossRefGoogle Scholar
  21. 21.
    Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, and N. Koshizaki, Chem. Phys. Lett. 368, 663 (2003).CrossRefGoogle Scholar
  22. 22.
    T. T. Xu, J.-G. Zheng, N. Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, and R. S. Ruoff, Nano Lett. 2004, submitted.Google Scholar
  23. 23.
    I. Boustani, Phys. Rev. B 55, 16426 (1997).CrossRefGoogle Scholar
  24. 24.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  26. 26.
    M.F. Guest, J.H. van Lenthe, J. Kendrick, and P. Sherwood, with contributions from R.D. Amos, R.J. Buenker, H. van Dam, M. Dupuis, N.C. Handy, I.H. Hillier, P.J. Knowles, V. Bonacic-Koutecky, W. von Niessen, R.J. Harrison, A.P. Rendell, V.R. Saunders, K. Schöffel, A.J. Stone and D. Tozer. (
  27. 27.
    G. Kresse, and J. Furthmller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  28. 28.
    D. M. Ceperley, and B. J. Alder, Phys. Rev. Lett. 45, 1196 (1980).CrossRefGoogle Scholar
  29. 29.
    A. Quandt, A. Y. Liu, and I. Boustani, Phys. Rev. B 64, 125422 (2001).CrossRefGoogle Scholar
  30. 30.
    I. Boustani, A. Quandt, and A. Rubio, J. Solid State Chem., 154, 269 (2000).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 2
  • J. A. ALONSO
    • 3
    • 4
  • A. RUBIO
    • 5
  1. 1.FB C - Theoretische ChemieBergische Universität WuppertalWuppertalGermany
  2. 2.Institut für PhysikUniversität GreifswaldGreifswaldGermany
  3. 3.Departamento de Fisica TeoricaUniversidad de ValladolidValladolidSpain
  4. 4.Donostia International Physics CenterP. Manuel de Lardizabal 4San SebastianSpain
  5. 5.Donostia International Physics CenterP.Manuel deLardizabal 4San SebastianSpain

Personalised recommendations