Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)


With use of cumulants of two-electron density matrices semiempirical and DFT methods are analyzed from a point of view of their suitability to describe qualitative features of electronic correlation important for molecular modelling of electronic structure of the transition metal complexes (TMC). It is shown that traditional semiempirical methods relying upon the Hartree-Fock-Roothaan form of the trial wave function suffer from a structural deficiency not allowing them to distinguish the energies of the atomic multiplets of the TMCs’ d-shells. The same applies to the DFT methodology. On the other hand, the effective Hamiltonian of the crystal field (EHCF) previously proposed by the authors is shown to be suitable for further parameterization. It has been applied for calculations of geometries in a series of polyatomic spin-active TMCs and has shown remarkable precision and an overall consistency. This allowed to solve in a sequential manner two long standing problems: extending molecular mechanics to transition metals and developing semiempirical quantum mechanical (QM) methods for transition metals.


Potential Energy Surface Quantum Chemistry Method Morse Potential Transition Metal Atom Racah Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas Aquinas. De Unitate Intellectus Contra Averroistas. Sancti Thomae Aquinatis Opera Omnia. 1980.Google Scholar
  2. 2.
    U. Burkert, N. L. Allinger. Molecular mechanics. Washington: ACS, 1982.Google Scholar
  3. 3.
    V. G. Dashevskii. Conformational Analysis of Organic Molecules. Khimiya, Moscow, 1982. [in Russian].Google Scholar
  4. 4.
    A. K. Rappé, C. J. Casewit, K. S. Colwell, III W. A. Goddard, W. M. Skiff. J. Am. Chem. Soc., 1992, 114:10024–10053.CrossRefGoogle Scholar
  5. 5.
    A. K. Rappé, K. S. Colwell, C. J. Casewit. Inorg.Chem., 1993, 32:3438–3450.CrossRefGoogle Scholar
  6. 6.
    B.P. Hay. Coord. Chem. Rev., 1993, 126:177–236.CrossRefGoogle Scholar
  7. 7.
    B. P. Hay, L. Yang, J.-H. Lii, N. L. Allinger. J. Mol. Struct. (THEOCHEM), 1998, 428:203–219.CrossRefGoogle Scholar
  8. 8.
    P. Comba, T. Hambley. Molecular modeling of inorganic compounds. VCH, 1995.Google Scholar
  9. 9.
    P. Comba, R. Remenyi. Coord. Chem. Rev., 2003, 238–239:9–20.CrossRefGoogle Scholar
  10. 10.
    H. Erras-Hanauer, T. Clark, R. Van Eldik. Coord. Chem. Rev., 2003, 238–239:233–253.CrossRefGoogle Scholar
  11. 11.
    P. Comba. Coord. Chem. Rev., 1999, 182:343–371.CrossRefGoogle Scholar
  12. 12.
    M. Zimmer. Coord. Chem. Rev., 2003, 212:133–163.CrossRefGoogle Scholar
  13. 13.
    R. D. Hancock. Prog. Inorg. Chem, 1989, 37:187.CrossRefGoogle Scholar
  14. 14.
    D. L. Kepert. Inorganic Stereochemistry. Springer, Berlin, 1982.Google Scholar
  15. 15.
    I. V. Pletnev, V. L. Melnikov. Koord. Khim., 1997, 23:205. [in Russian].Google Scholar
  16. 16.
    M. G. Razumov, V. L. Melnikov, I. V. Pletnev. J. Comp. Chem., 2001, 22:38.CrossRefGoogle Scholar
  17. 17.
    J. Sabolović. Polyhedron, 1993, 12:1107–1113.CrossRefGoogle Scholar
  18. 18.
    J. Sabolović, Kj. Rasmussen. Inorg. Chem., 1995, 34:1221–1232.CrossRefGoogle Scholar
  19. 19.
    I. M. Atkinson, L. F. Lindoy. Coord. Chem. Rev., 2000, 200–202:207–215.CrossRefGoogle Scholar
  20. 20.
    M. Gruden, S. Grubišić, A. G. Coutsolelos, S. R. Niketić. J. Mol. Struct., 2001, 595:209–224.CrossRefGoogle Scholar
  21. 21.
    C. Millot, R. Dehez. J. Comp. Meth. Sci. Eng., 2002, 2(3s–4s):451–456.Google Scholar
  22. 22.
    P. Gütlich. Struct. Bond., 1981, 44:83.Google Scholar
  23. 23.
    E. König, G. Ritter, S. K. Kulshreshtha. Chem. Rev., 1985, 85:219–234.CrossRefGoogle Scholar
  24. 24.
    E. König. Nature and dynamics of spin-state interconversion in metal complexes, volume 76 of Struct. Bond., pages 53–151. Springer-Verlag, 1991.Google Scholar
  25. 25.
    P. Gütlich, H. A. Goodwin, editors. Spin Crossover in Transition Metal Compounds, volume 233–235 of Topics Curr. Chem. Springer-Verlag, 2004.Google Scholar
  26. 26.
    I. B. Bersuker. Jahn-Teller Effect and Vibronic Interactions in Chemistry. Nauka, Moscow, 1990. [in Russian].Google Scholar
  27. 27.
    V.I. Pupyshev. Int. J. Quant. Chem., 2005. [Submitted].Google Scholar
  28. 28.
    M. B. Darkhovskii, A. L. Tchougréeff. Khim. Fiz., 1999, 18(1):73–79. [in Russian].Google Scholar
  29. 29.
    M. B. Darkhovskii, M. G. Razumov, I. V. Pletnev, A. L. Tchougréeff. Int. J. Quant. Chem., 2002, 88:588–605.CrossRefGoogle Scholar
  30. 30.
    R. J. Deeth. Coord. Chem. Rev., 2001, 212:11–34.CrossRefGoogle Scholar
  31. 31.
    H. M. Marques, O. Q. Munro, N. E. Grimmer, D. C. Levendis, F. Marsicano, G. Pattrick, T. Markoulides. J. Chem. Soc. Faraday Trans., 1995, 91(2):1741.CrossRefGoogle Scholar
  32. 32.
    C. Daul, S. Niketic, C. Rauzy, C.-W. Schlöpfer. Chemistry - A European Journal, 2004, 10:721–727.CrossRefGoogle Scholar
  33. 33.
    M.B. Darkhovskii, A.L. Tchougréeff. Unpublished. Google Scholar
  34. 34.
    T. Ziegler. Chem. Rev., 1991, 91:651–667.CrossRefGoogle Scholar
  35. 35.
    P.-O. Löwdin. Adv. Chem. Phys., 1959, 2:207 – 22.Google Scholar
  36. 36.
    R. McWeeny. Methods of Molecular Quantum Mechanics. Academic Press, London, second edition, 1992.Google Scholar
  37. 37.
    P. Ziesche. Physics Lett. A, 1994, 195:213–220.CrossRefGoogle Scholar
  38. 38.
    M.M. Mestechkin. Density Matrix Method in Theory of Molecules. Naukova Dumka, Kiev, 1977. [in Russian].Google Scholar
  39. 39.
    B. O. Roos. The complete active space self-consistent field method and its application in electronic structure calculations. In K. P. Lawley, editor, Ab Initio Methods in Quantum Chemistry. Part II, volume 69 of Adv. Chem. Phys., pages 399–446. John Wiley, Chichester, 1987.Google Scholar
  40. 40.
    G. D. Purvis, R. J. Bartlett. J. Chem. Phys., 1982, 76:1910.CrossRefGoogle Scholar
  41. 41.
    R. A. Chiles, C. E. Dykstra. Chem. Phys. Lett., 1981, 80:69.CrossRefGoogle Scholar
  42. 42.
    H.M. Gladney, A. Veillard. Phys. Rev., 1969, 180:385–395.CrossRefGoogle Scholar
  43. 43.
    J. W. Richardson, D. M. Vaught, T. F. Soules, R. R. Powell. J. Chem. Phys., 1969, 50(8):3633–3634.CrossRefGoogle Scholar
  44. 44.
    J. W. Moskowitz, C. Hollister, C. J. Hornback, H. Basch. J. Chem. Phys., 1970, 53(7):2570–2580.CrossRefGoogle Scholar
  45. 45.
    J. Demuynck, A. Veillard. Transition metal compounds. In III H. F. Schaefer, editor, Applications of Electronic Structure Theory, pages 187–222. Plenum Press, New York, London:, 1977.Google Scholar
  46. 46.
    A. Veillard. Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. Kluwer Academic, 1986.Google Scholar
  47. 47.
    D. J. D. Wilson, C. J. Marsden, E. I. von Nagy-Felsobuki. J. Phys. Chem. A, 2002, 106:7348–7354.CrossRefGoogle Scholar
  48. 48.
    Chem. Rev., 2000, 100.Google Scholar
  49. 49.
    M. Krauss. Int. J. Quant. Chem., 2002, 76:331–340.CrossRefGoogle Scholar
  50. 50.
    V. G. Solomonik, J. E. Boggs, J. F. Stanton. J. Phys. Chem. A, 1999, 103:838–840.CrossRefGoogle Scholar
  51. 51.
    L. Rulíšek, Z. Havlas. J. Chem. Phys., 2002, 112(1):149–157.Google Scholar
  52. 52.
    A. Dedieu, M.-M. Rohmer, A. Veillard. Adv. in Quant. Chem., 1982, 16:43–97.CrossRefGoogle Scholar
  53. 53.
    K. Pierloot. The electronic ground state of iron (II) porphine: A continuing story. In WATOC'02 Book of Abstracts, page PC393, Palazzo dei Congressi, Lugano, Switzerland, 2002. WATOC'02.Google Scholar
  54. 54.
    K. Pierloot. Molecular Physics, 2003, 101:2083–2095.CrossRefGoogle Scholar
  55. 55.
    K. Nobuaki, K. Morokuma. Chemical Reviews, 1991, 91:823–842.CrossRefGoogle Scholar
  56. 56.
    D. Balcells, G. Drudis-Sole, M. Besora, N. Dolker, G. Ujaque, F. Maseras, A. Lledos. Faraday Discuss., 2003, 124:429–441.CrossRefGoogle Scholar
  57. 57.
    A. L. Tchougréeff, A. M. Tokmachev. Physical principles of constructing hybrid QM/MM procedures. In J. Maruani, R. Lefebvre, E. Brändas, editors, Advanced Topics in Theoretical Chemical Physics, volume 12 of Progress in Theoretical Chemistry and Physics, pages 207–246. Kluwer, Dordrecht, 2003.Google Scholar
  58. 58.
    G. E. Toney, A. Gold, J. Savrin, L. W. TerHaar, R. Sangaiah, W. E. Hatfield. Inorg. Chem., 1984, 23:4350–4352.CrossRefGoogle Scholar
  59. 59.
    D.W. Clack, N.S. Hush, S.R. Yandle. J. Chem. Phys., 1972, 57:3503–3510.CrossRefGoogle Scholar
  60. 60.
    D. W. Clack. Mol.Phys., 1974, 27:1513–1519.Google Scholar
  61. 61.
    D. W. Clack, W. Smith. J. Chem. Soc. Dalton Trans., 1974, page 2015.Google Scholar
  62. 62.
    J. A. Pople, D. L. Beveridge. Approximate Molecular Orbital Theory. McGraw-Hill Book, New York, 1970.Google Scholar
  63. 63.
    A. D. Bacon, M. C. Zerner. Theor. Chim. Acta, 1979, 53:21–54.CrossRefGoogle Scholar
  64. 64.
    M. C. Böhm, R. Gleiter. Theor. Chem. Acta, 1981, 59:127–152.CrossRefGoogle Scholar
  65. 65.
    M. C. Böhm, R. Gleiter. Theor. Chem. Acta, 1981, 59:153–179.CrossRefGoogle Scholar
  66. 66.
    M. J. S. Dewar, C. Jie, J. Yu. Tetrahedron, 1993, 49:5003–5038.CrossRefGoogle Scholar
  67. 67.
    T. R. Cundari. J. Chem. Soc., Dalton Trans., 1998, pages 2771–2776.Google Scholar
  68. 68.
    T. R. Cundari, J. Deng. J. Chem. Inf. Comp. Sci., 1999, 39:376–381.CrossRefGoogle Scholar
  69. 69.
    M. Mohr, J. P. McNamara, H. Wang, S. A. Rajeev, J. Ge, C. A. Morgado, I. H. Hillier. Faraday Discuss., 2003, 124:413–428.CrossRefGoogle Scholar
  70. 70.
    T. Clark. Computational Chemistry. VCH Verlag, Berlin, 1991.Google Scholar
  71. 71.
    L. Zülicke. Quantenchemie. Band 1. Deutscher Verlag der Wissenschaften, Berlin, 1973.Google Scholar
  72. 72.
    I. G. Kaplan. Int. J. Quant. Chem., 2002, 89(4):268–276.CrossRefGoogle Scholar
  73. 73.
    T. R. Cundari, J. Deng, W. Fu. Int. J. Quant. Chem., 2000, 77:421.CrossRefGoogle Scholar
  74. 74.
    K. R. Adam, I. M. Atkinson, L.F. Lindoy. J. Mol. Struct., 1996, 384:183.CrossRefGoogle Scholar
  75. 75.
    V. A. Basiuk, E. V. Basiuk, J. Gómez-Lara. J. Mol. Struct. (THEOCHEM), 2001, 536:17–24.CrossRefGoogle Scholar
  76. 76.
    R. Bosque, F. Maseras. J. Comp. Chem., 2000, 21(7):562–571.CrossRefGoogle Scholar
  77. 77.
    M. C. Zerner. Intermediate neglect of differential overlap calculations on the electronic spectra of transition metal complexes. In N. Russo D. R. Salahub, editors, Metal-ligand interactions: structure and reactivity, pages 493–531, Dordrecht, 1996. NATO ASI Workshop, Kluwer.Google Scholar
  78. 78.
    J. C. Slater. Adv. Quant. Chem., 1972, 6:1–92.CrossRefGoogle Scholar
  79. 79.
    A. Messiah. Quantum Mechanics, volume 2. 1958.Google Scholar
  80. 80.
    P. Hohenberg, W. Kohn. Phys. Rev., 1964, 136:B864–B871.CrossRefGoogle Scholar
  81. 81.
    W. Kohn, L. J. Sham. Phys. Rev, 1965, 140(4A):A1133–A1138.CrossRefGoogle Scholar
  82. 82.
    A. Nagy. Physics Reports, 1998, 298:1–79.CrossRefGoogle Scholar
  83. 83.
    R.K. Nesbet. Int. J. Quant. Chem., 2001, 85:405–410.CrossRefGoogle Scholar
  84. 84.
    R. K. Nesbet. Int. J. Quant. Chem., 2004, 100:937–942.CrossRefGoogle Scholar
  85. 85.
    J. Li, P. Beroza, L. Noodleman, D. A. Case. In L. Banci P. Comba, editors, Molecular modeling and dynamics of bioinorganic systems, page 279, Dordrecht, 1997. Proceedings of NATO ASI workshop, Kluwer.Google Scholar
  86. 86.
    H. Chermette. Coord. Chem. Rev., 1998, 178–180:699.CrossRefGoogle Scholar
  87. 87.
    C. Anthon, C. E. Schäffer. Coord. Chem. Rev., 2002, 226:17–38.CrossRefGoogle Scholar
  88. 88.
    P. E. M. Siegbahn. Faraday Discuss., 2003, 124:289–296.CrossRefGoogle Scholar
  89. 89.
    M. Freindorf, P. M. Kozlowski. J. Phys. Chem. A, 2001, 105:7267–7272.CrossRefGoogle Scholar
  90. 90.
    L. Rulíšek, Z. Havlas. Int. J. Quant. Chem., 2003, 91:504–510.CrossRefGoogle Scholar
  91. 91.
    T. Ziegler, A. Rauk, E.J. Baerends. Theor. Chem. Acta, 1977, 43:261.CrossRefGoogle Scholar
  92. 92.
    C. C. J. Roothaan. Rev. Mod. Phys., 1960, 32:179–185.CrossRefGoogle Scholar
  93. 93.
    B. N. Plakhutin, G. M. Zhidomirov. Zh. Strukt. Khim., 1986, 27(2):3–8. [in Russian].Google Scholar
  94. 94.
    B. N. Plakhutin, G. M. Zhidomirov, A. V. Arbuznikov. Int. J. Quant. Chem., 1992, 41:311–325.CrossRefGoogle Scholar
  95. 95.
    A. V. Arbuznikov, B. N. Plakhutin. Zhurn. Fiz. Khim., 1993, 67:1173–1176. [in Russian].Google Scholar
  96. 96.
    E. U. Condon, G. H. Shortley. The theory of atomic spectra. Cambridge University Press, Cambridge, second edition, 1951.Google Scholar
  97. 97.
    I. B. Bersuker. Electronic Structure of Coordination Compounds. Khimiya, Moscow, 1986. [in Russian].Google Scholar
  98. 98.
    D. T. Sviridov, Yu. F. Smirnov. Theory of Optical Spectra of Transition-Metal Ions. Nauka, Moscow, 1977. [in Russian].Google Scholar
  99. 99.
    O. Gunnarsson, B. I. Lundqvist. Phys. Rev. B, 1976, 13:4274–4298.CrossRefGoogle Scholar
  100. 100.
    U. von Barth. Phys. Rev. A, 1979, 20:1693–1703.CrossRefGoogle Scholar
  101. 101.
    G. Chen, R. Liu, I. Silaghi-Dumitrescu, G. Espinosa-Perez, A. Zentella-Dehesa, F. Lara-Ochoa. Int. J. Quant. Chem., 2002, 83(2):60–69.CrossRefGoogle Scholar
  102. 102.
    H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, A. X. Trautwein. Inorg. Chem., 2001, 40:2201–2203.CrossRefGoogle Scholar
  103. 103.
    H. Paulsen, H. Grunsteudel, W. Meyer-Klaucke, M. Gerdan, H.F. Grunsteudel, A.I. Chumakov, R. Ruffer, H. Winkler, H. Toftlund, A.X. Trautwein. The European Phys. J. B, 2001, 23:463–472.CrossRefGoogle Scholar
  104. 104.
    H. Paulsen, L. Duelund, A. Zimmermann, F. Averseng, M. Gerdan, H. Winkler, H. Toftlund, Alfred X. Trautwein. Monatshefte fur Chemie, 2003, 134:295–306.Google Scholar
  105. 105.
    P. Gütlich, J. Jung, H. Goodwin. Spin crossover in iron(II)-complexes. In E. Coronado, P. Delhaés, D. Gatteshi, J. Miller, editors, Molecular Magnetism: From Molecular Assemblies to the Devices, page 327. Kluwer, 1996.Google Scholar
  106. 106.
    H. Paulsen, A. X. Trautwein. Density functional theory calculations for spin crossover complexes. In P. Gütlich H.A. Goodwin, editors, Spin Crossover in Transition Metal Compounds III, volume 235 of Top Curr Chem, pages 197–219. Springer-Verlag, 2004.Google Scholar
  107. 107.
    M. Reiher, O. Salomon, B. A. Hess. Theor. Chem. Acc., 2001, 107:48–55.Google Scholar
  108. 108.
    M. Reiher. Inorg. Chem., 2002, 41:6928–6935.CrossRefGoogle Scholar
  109. 109.
    O. Salomon, M. Reiher, B. A. Hess. J. Chem. Phys., 2002, 117:4729–4737.CrossRefGoogle Scholar
  110. 110.
    C. Lee, W. Yang, R. G. Parr. Phys. Rev. B, 1988, 37:785–789.CrossRefGoogle Scholar
  111. 111.
    S. H. Vosko, L. Wilk, M. Nusair. Can. J. Phys., 1980, 58:1200.CrossRefGoogle Scholar
  112. 112.
    R. K. Szilagyi, M. Metz, E. I. Solomon. J. Phys. Chem. A, 2002, 106:2994–3007.CrossRefGoogle Scholar
  113. 113.
    A. Nagy. Phys. Rev. A, 1998, 57:1672–1677.CrossRefGoogle Scholar
  114. 114.
    N. Hamamoto, C. Satoko. J. Phys. B, 2004, 37:4309–4328.CrossRefGoogle Scholar
  115. 115.
    M. Atanasov, C. A. Daul, C. Rauzy. Chem. Phys. Lett., 2003, 367:737–746.CrossRefGoogle Scholar
  116. 116.
    A. Rosa, G. Ricciardi, O. Gritsenko, E. J. Baerends. Excitation energies of metal complexes with time-dependent density functional theory. In N. Kaltsoyannis J.E. McGrady, editors, Principles and Applications of Density Functional Theory in Inorganic Chemistry I, volume 112 of Structure and Bonding, pages 49–116. Springer-Verlag, 2004.Google Scholar
  117. 117.
    S. Grimme, M. Waletzke. J. Chem. Phys., 1999, 111:5645.CrossRefGoogle Scholar
  118. 118.
    P. A. M. Dirac. Proc. Camb. Phil. Soc., 1929, 25:62.CrossRefGoogle Scholar
  119. 119.
    J. Frenkel. Wave Mechanics: Advanced General Theory. Clarendon Press, Oxford, 1934.Google Scholar
  120. 120.
    D. J. Thouless. The Quantum Mechanics of Many-Body Systems. Academic Press, New York, 1961.Google Scholar
  121. 121.
    D. J. Rowe. Rev. Mod. Phys., 1968, 40:153–166.CrossRefGoogle Scholar
  122. 122.
    J.-P. Blaizot, G. Ripka. Quantum Theory of Finite Systems. The MIT Press, Cambridge, Mass., 1986.Google Scholar
  123. 123.
    R. J. Deeth. Faraday Discuss ., 2003, 124:379–391.CrossRefGoogle Scholar
  124. 124.
    F. Furche, K. Burke. Time-dependent density functional theory in quantum chemistry. Ann. Rev. Comp. Chem., chapter XX. 2004.Google Scholar
  125. 125.
    K. Burke, J. Werschnik, E. K. U. Gross. J. Chem. Phys., 2005, 123(6):062206. 2005.CrossRefGoogle Scholar
  126. 126.
    P. E. Schipper. J. Phys. Chem., 1986, 90(18):4259–4265.CrossRefGoogle Scholar
  127. 127.
    H. A. Bethe. Ann. Physik, 1929, 3:133–206.Google Scholar
  128. 128.
    C. K. Jorgensen. Absorption Spectra and Chemical Bonding in Complexes. Pergamon Press, Oxford, 1962.Google Scholar
  129. 129.
    C. E. Schäffer. Pure Appl. Chem., 1971, pages 361–392.Google Scholar
  130. 130.
    A. V. P. Lever. Inorganic electronic spectroscopy. John Wiley, 1985.Google Scholar
  131. 131.
    C. J. Ballhausen. Indroduction to Ligand Field Theory. McGraw Hill, New York, 1962.Google Scholar
  132. 132.
    C. E. Schäffer, C. K. Jorgensen. Mol. Phys., 1965, 9:401.CrossRefGoogle Scholar
  133. 133.
    A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin. Theor. Chim. Acta, 1992, 83:389.CrossRefGoogle Scholar
  134. 134.
    A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin. Int. J. Quant. Chem., 1996, 57:663.CrossRefGoogle Scholar
  135. 135.
    A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin. Int. J. Quant. Chem., 1996, 58:161.CrossRefGoogle Scholar
  136. 136.
    A. V. Sinitsky, M. B. Darkhovskii, A. L. Tchougréeff, I. A. Misurkin. Int. J. Quant. Chem, 2002, 88:370–379.CrossRefGoogle Scholar
  137. 137.
    A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin. Zh. Fiz. Khim., 1994, 68(7): 1256–1263. [in Russian].Google Scholar
  138. 138.
    A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin. Zh. Fiz. Khim., 1994, 68(7): 1264–1270. [in Russian].Google Scholar
  139. 139.
    A.M. Tokmachev, A.L. Tchougréeff. Khim. Fiz., 1999, 18(1):80–87. [in Russian].Google Scholar
  140. 140.
    A. M. Tokmachev. PhD thesis, Moscow, 2003. [in Russian].Google Scholar
  141. 141.
    A. L. Tchougréeff, A. V. Soudackov, I. A. Misurkin, H. Bolvin, O. Kahn. Chem. Phys., 1995, 193:19.CrossRefGoogle Scholar
  142. 142.
    P. G. Perkins, J. J. P. Stewart. J. Chem. Soc. Faraday Trans. (II), 1982, 78:285.CrossRefGoogle Scholar
  143. 143.
    M. Gerloch, R. G. Wooley. Struct. Bond., 1983, page 371.Google Scholar
  144. 144.
    A. Warshel, M. Levitt. J. Mol. Biol., 1976, 103(2):227–249.CrossRefGoogle Scholar
  145. 145.
    A. A. Abrikosov, L. P. Gor'kov, I. Ye. Dzyaloshinskii. Quantum Field Theoretical Methods in Statistical Physics. Pergamon Press, Oxford, 1965.Google Scholar
  146. 146.
    A. V. M. de Andrade, N. B. da Costa Jr., A. M. Simas, G. F. de Sa. Chem. Phys.Lett., 1994, 227:349–353.CrossRefGoogle Scholar
  147. 147.
    P. Ren, J. W. Ponder. J. Comput. Chem., 2002, 23:1497–1506.CrossRefGoogle Scholar
  148. 148.
    M. B. Darkhovskii, A. L. Tchougréeff. J. Phys. Chem. A, 2004, 108:6351–6364.CrossRefGoogle Scholar
  149. 149.
    M. B. Darkhovskii, I. V. Pletnev, A. L. Tchougréeff. J. Comp. Chem., 2003, 24:1703–1719.CrossRefGoogle Scholar
  150. 150.
    S. R. Níketiĉ, Kj. Rasmussen. The Consistent Force Field: A Documentation, volume 3 of Lecture Notes in Chemistry. Springer-Verlag, 1977.Google Scholar
  151. 151.
    M.B. Darkhovskii, A.V. Soudackov, A.L. Tchougréeff. Theor. Chem. Acc., Accepted.Google Scholar
  152. 152.
    G. J. M. Janssen, W. C. Nieuwpoort. Int. J. Quant. Chem., 1988, 22:679–696.CrossRefGoogle Scholar
  153. 153.
    L. Seijo, Z. Barandiaran. The Ab Initio model potential method: a common strategy for effective core potential and embedded cluster calculations. In J. Leszczynski, editor, Computational chemistry: Reviews of current trends, volume 4. World Scientific, Singapur, 1999.Google Scholar
  154. 154.
    A. Görling. Phys. Rev. A, 1993, 47:2783–2799.CrossRefGoogle Scholar
  155. 155.
    C. J. Margulis, V. Guallar, E. Sim, R. A. Friesner, B. J. Berne. J. Phys. Chem. B, 2002, 106:8038–8046.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 1
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations