Advertisement

THREE-GOLD CLUSTER AS PROTON ACCEPTOR IN NONCONVENTIONAL HYDROGEN BONDS O-H…Au AND N-H…Au

  • E. S. KRYACHKO
  • F. REMACLE
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

The present work extends the family of nonconventional proton acceptors to the coinage metal Au. Based on high level computations, we demonstrate the ability of the triangle three-gold cluster to behave as nonconventional proton acceptor and hence to form hydrogen bonds with conventional hydrogen bond donors. Three molecules: formic acid, alanine, and adenine, involving O-H and N-H groups as typical conventional hydrogen bond donors, are chosen for this purpose.

Keywords

Formic Acid Gold Cluster Gold Atom Proton Acceptor Total Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Huggins, Thesis (University of California, 1919).Google Scholar
  2. 2.
    W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc. 42, 1419 (1920).CrossRefGoogle Scholar
  3. 3.
    L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1939). See also L. Pauling, Proc. Natl. Acad. Sci. USA 14, 359 (1928).Google Scholar
  4. 4.
    G. N. Lewis, Valence and Structure of Atoms and Molecules (Chemical Catalog, New York, 1923).Google Scholar
  5. 5.
    D. Hadži and H. W. Thompson (Eds.), Hydrogen Bonding (Pergamon Press, London, 1959).Google Scholar
  6. 6.
    C. G. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960).Google Scholar
  7. 7.
    W. C. Hamilton and J. A. Ibers, Hydrogen Bonding in Solids (Benjamin, New York, 1968).Google Scholar
  8. 8.
    P. A. Kollman and L. C. Allen, Chem. Rev. 72, 283 (1972).CrossRefGoogle Scholar
  9. 9.
    P. Schuster, G. Zundel, and C. Sandorfy (Eds.), The Hydrogen Bond. Recent Developments in Theory and Experiments (North-Holland, Amsterdam, 1976).Google Scholar
  10. 10.
    G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, 2nd edition (Springer, Berlin, 1994).Google Scholar
  11. 11.
    G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, Oxford, 1997).Google Scholar
  12. 12.
    S. Scheiner, Hydrogen Bonding. A Theoretical Perspective (Oxford University Press, Oxford, 1997).Google Scholar
  13. 13.
    G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Oxford, 1999).Google Scholar
  14. 14.
    P. Schuster, in Intermolecular Interactions: From Diatomics to Biopolymers, edited by B. Pullman (Wiley, Chichester, 1978). p. 363.Google Scholar
  15. 15.
    T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002).CrossRefGoogle Scholar
  16. 16.
    T. Steiner and G. R. Desiraju, Chem. Commun. 891 (1998).Google Scholar
  17. 17.
    M. S. Gordon and J. H. Jensen, Acc. Chem. Res. 29, 536 (1996).CrossRefGoogle Scholar
  18. 18.
    C. Sandorfy, Top. Curr. Chem. 120, 41 (1984).Google Scholar
  19. 19.
    S. Scheiner, in Pauling’s Legacy—Modern Modelling of the Chemical Bond, Vol. 6, edited by Z. B. Maksic and W. J. Orville-Thomas (Elsevier, Amsterdam, 1977). p. 571.Google Scholar
  20. 20.
    (a) J. E. Del Bene, in The Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998). Vol. 2, p. 1263; (b) J. E. Del Bene and M. J. T. Jordan, Int. Rev. Phys. Chem. 18, 119 (1999); (c) J. E. Del Bene, in Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters, NATO ASI Series C, Vol. 561, edited by S. S. Xantheas (Kluwer, Dordrecht, 2000). p. 309.Google Scholar
  21. 21.
    I. G. Kaplan, Theory of Molecular Interactions. Studies in Physical and Theoretical Chemistry, Vol. 42 (Elsevier, Amsterdam, 1986).Google Scholar
  22. 22.
    (a) L. Brammer, M. C. McCann, R. M. Bullock, R. K. McMullan, and P. Sherwood, Organometallics 11, 2339 (1992); (b) S. G. Kazarian, P. A. Hanley, and M. Poliakoff, J. Am. Chem. Soc. 115, 9069 (1993); (c) A. Albinati, F. Lianza, P. S. Pregosin, and B. Müller, Inorg. Chem. 33, 2522 (1994); (d) Y. Gao, O. Eisenstein, R. H. Crabtree, Inorg. Chim. Acta 254, 105 (1997); (e) L. Brammer, D. Zhao, F. T. Lapido, and J. Braddock-Wilking, Acta Crystallogr. Sect. B 53, 680 (1995); (f) D. Braga, F. Grepioni, and G. R. Desiraju, Chem. Rev. 98, 1375 (1998).CrossRefGoogle Scholar
  23. 23.
    (a) E. S. Shubina, N. V. Belkova, and L. M. Epstein, J. Organomet. Chem. 17, 536 (1997); (b) G. Orlova and S. Scheiner, Organometallics 17, 4362 (1998); (c) L. M. Epstein and E. S. Shubina, Ber. Bunsenges. Phys. Chem. 102, 359 (1998).Google Scholar
  24. 24.
    (a) L. M. Epstein and E. S. Shubina, Coord. Chem. Rev. 231, 165 (2002); (b) L. Brammer, Dalton Trans. 3145 (2003); and references therein.Google Scholar
  25. 25.
    (a) C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996); (b) R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078 (1997); (c) J. J. Storhoff and C. A. Mirkin, Chem. Rev. 99, 1849 (1999); (d) Y. W. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002); (e) S.-J. Park, T. A. Taton, C. A. Mirkin, Science 295, 1503 (2002); (f) J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Science 301, 1884 (2003); (g) C. M. Niemeyer, Angew. Chem., Int. Ed. 40, 4129 (2001); (h) C. M. Niemeyer, W. Burger, and J. Peplies, Angew. Chem., Int. Ed. 37, 2265 (1998); (i) A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wislon, C. J. Loweth, M. P. Bruchez, Jr., G. C. Schultz, Nature 382, 609 (1996); (j) M. C. Pirrung, Angew. Chem. Int. Ed. 41, 1277 (2002); (j) M.-C. Daniel, and D. Astruc, Chem. Rev. 104, 293 (2004); (k) N. C. Seeman, Nature 421, 427 (2003); (l) H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, Science 301, 1882 (2003); and references therein.CrossRefGoogle Scholar
  26. 26.
    (a) W. Li, W. Haiss, S. Floate, and R. Nichols, Langmuir 15, 4875 (1999); (b) Y. J. Xiao and Y. F. Chen, Spectrochim. Acta A 55, 1209 (1999); (c) A. P. M. Camargo, H. Baumgärtel, and C. Donner, PHYSCHEMCOMM 151 (2002); and references therein.CrossRefGoogle Scholar
  27. 27.
    (a) L. M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, and C. A. Mirkin, J. Am. Chem. Soc. 124, 11248 (2002); (b) J. J. Storhoff, R. Elghanian, C. A. Mirkin, and R. L. Letsinger, Langmuir 18, 6666 (2002); (c) H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, J. Am. Chem. Soc. 125, 9014 (2003); (d) Q. Chen, D. J. Frankel, and N. V. Richardson, Langmuir 18, 3219 (2002); (e) B. Giese and D. McNaughton, J. Phys. Chem. B 125, 1112 (2002).CrossRefGoogle Scholar
  28. 28.
    (a) D. V. Leff, L. Brandt, and J. R. Heath, Langmuir, 12, 4723 (1996); (b) L. O. Brown and J. E. Hutchison, J. Phys. Chem. B 105, 8911 (2001); (c) M. Sastry, A. Kumar, and P. Mukherjee, Colloids Surf. A: Physicochem. Eng. Aspects 181, 255 (2001); (d) P. R. Selvakannan, S. Mandal, S. Phadtare, S. Pasricha, and M. Sastry, Langmuir 19, 3545 (2003); (e) H. Joshi, P. S. Shirude, V. Bansal, K. N. Ganesh, and M. Sastry, J. Phys. Chem. B 108, 11535 (2004).CrossRefGoogle Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03 (Revision A.1), Gaussian, Inc., Pittsburgh, PA, 2003.Google Scholar
  30. 30.
    R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 93, 6654 (1990).CrossRefGoogle Scholar
  31. 31.
    D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).CrossRefGoogle Scholar
  32. 32.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270, 299 (1985).CrossRefGoogle Scholar
  33. 33.
    F. Remacle and E. S. Kryachko, Adv. Quantum Chem. 47, 423 (2004).CrossRefGoogle Scholar
  34. 34.
    F. Remacle and E. S. Kryachko, J. Chem. Phys. 122, 044304 (2005).CrossRefGoogle Scholar
  35. 35.
    The triangle Au3 cluster is characterized by the electronic energy of -407.907290 (EC), -407.787835 (S), -406.420509 (HW-LA) hartree; ZPVE = 0.418 (EC), 0.391 (S), 0.398 (HW-LA) kcal/mol; enthalpy equal to -407.900617 (EC), -407.781168 (S), -406.413836 (HW-LA) hartree; entropy of 89.66 (EC), 90.51 (S), 90.97 (HW-LA) cal/mol-T; the bond lengths r(Au1-Au2) = r(Au2-Au3) = 2.654 (EC), 2.675 (S), 2.640 (HW-LA) Å, r(Au1-Au3) = 2.992 (EC), 3.110 (S), 4.975 (HW-LA) Å; and the total dipole moment dtot = 0.97 (EC), 0.84 (S), 0.37 (HW-LA) D.Google Scholar
  36. 36.
    E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 000, 000 (2005).Google Scholar
  37. 37.
    Some B3LYP/6-31++G(d,p) properties of formic acide (see Figure 1 for atomic numbering): r(C1-O2) = 1.347 Å, r(C1=O3) = 1.207 Å, r(O2-H2) = 0.974 Å, r(Ci-H1) = 1.098 ∠ZCiN2H2 = 107.9°ν(O2-H2) = 3732 cm–1 (AIR= 60 km/mol), ν(O2-D2) = 2714 cm–1 (AIR =40 km/mol); δσ an(O2) = 134.8 ppm, δσ(H2) =25.4 ppm, δσan(O2) = 190.2 ppm, δσan(O2) = 9.5 ppm; the total dipole moment dtot = 1.53 D. The B3LYP/6-31++G(d,p) computational approach invoked in the present work rather accurately describes the properties of formic acid: cf. J. H. Lim, E. K. Lee, and Y. Kim, J. Phys. Chem. 101, 2233 (1997) and D. Wei, J.-F. Truchon, S. Sirois, and D. Salahub, J. Chem. Phys. 116, 6028 (2002) and references therein.Google Scholar
  38. 38.
    (a) J. F. Hinton and K. Wolinski in Theoretical Treatments of Hydrogen Bonding, edited by D. Hadži (Wiley, Chichester, 1997). p. 75; (b) E. D. Becker in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, New York, 1996). p. 2409; (c) T. Kar and S. Scheiner, J. Phys. Chem. A 108, 9161 (2004); and references therein.Google Scholar
  39. 39.
    S. Blanco, A. Lesarri, J. C. López, and J. L. Alonso, J. Am. Chem. Soc. 126, 11675 (2004).CrossRefGoogle Scholar
  40. 40.
    F. Remacle and E. S. Kryachko, J. Phys. Chem. B (submitted).Google Scholar
  41. 41.
    (a) A. K. Chandra, M. T. Nguyen, T. Uchimaru, and T. Zeegers-Huyskens, J. Phys. Chem. A 103, 8853 (1999); (b) E. S. Kryachko, M. T. Nguyen, and T. Zeegers-Huyskens, Ibid. 105, 1288, 1934 (2001); and references therein.CrossRefGoogle Scholar
  42. 42.
    (a) Y. Gu, T. Kar, and S. Scheiner, J. Am. Chem. Soc. 121, 9411 (1999); (b) E. S. Kryachko and T. Zeegers-Huyskens, J. Phys. Chem. A 105, 7118 (2001); (c) E. S. Kryachko and T. Zeegers-Huyskens, Ibid. 105, 7118 (2001); (d) E. S. Kryachko and T. Zeegers-Huyskens, Ibid. 106, 6832 (2002); and references therein.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • E. S. KRYACHKO
    • 1
    • 2
  • F. REMACLE
    • 3
  1. 1.Department of Chemistry, Bat. B6cUniversity of LiegeLiege 1Belgium
  2. 2.Bogoliubov Institute for Theoretical PhysicsKievUkraine
  3. 3.Maítre de Recherche, FNRS (Belgium), Department of Chemistry, Bat. B6cUniversity of LiegeLiege 1Belgium

Personalised recommendations