Advertisement

DENSITY FUNCTIONAL STUDIES OF NOBLE METAL CLUSTERS. ADSORPTION OF O2 AND CO ON GOLD AND SILVER CLUSTERS

  • EVA MARÍA FERNÁNDEZ
  • MARÍA BEGOÑA TORRES
  • LUIS CARLOS BALBÁS
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

We study structural and chemisorption properties of pure and doped noble metal clusters by means of first-principles density functional calculations, based on norm-conserving pseudo-potentials and numerical atomic basis sets. First, we show that, together with relativistic effiects, the level of theory, that is, the use of GGA or LDA exchange-correlation functionals, is of paramount importance to determine the onset of three dimensional structures in Au clusters, whereas for Ag or Cu clusters it is not so critical. Second, within the GGA framework, we find cage-like stable structures for neutral Au18, Au20, Au32, Au50, and Au162.

Keywords

Generalize Gradient Approximation Gold Cluster Density Functional Theory Study Neutral Cluster Transition Metal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ekardt, Metal Clusters (Wiley, Chichester, 1999).Google Scholar
  2. 2.
    N. Agrai't, A. L. Yeyati, and J. M. van Ruitenbeeck, Physics Reports 377, 81 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).CrossRefGoogle Scholar
  4. 4.
    L. M. Molina and B. Hammer, Phys. Rev. Lett. 90, 206102 (2003); Phys. Rev. B 69, 155424 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004).CrossRefGoogle Scholar
  6. 6.
    E. M. Fernández, J. M. Soler, I. L. Garzón, and L. C. Balbás, Phys. Rev. B 70, 165403 (2004).CrossRefGoogle Scholar
  7. 7.
    T. Bastug, M. Hirata, S. Varga, B. Fricke, S. Erkoc, and T. Mukoyama, Adv. Quan tum Chem. 37, 353 (2001).Google Scholar
  8. 8.
    F. Furche, R. Ahlrich, P. Weis, Ch. Jacob, S. Gilb, T. Bienweiler, and M. Kappes, J. Chem. Phys. 117, 6982 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002).CrossRefGoogle Scholar
  10. 10.
    P. Weis, T. Bierweiler, S. Gilb, and M. M. Kappes, Chem. Phys. Lett. 355, 355 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. A. Hoffmann, and B. von Issendorff, Phys. Rev. Lett. 93, 093401 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science 299, 864 (2003).CrossRefGoogle Scholar
  13. 13.
    J. Wang, G. Wang, and J. Zhao, Chem. Phys. Lett. 380, 716 (2003).CrossRefGoogle Scholar
  14. 14.
    M. P. Johansson, D. Sundholm, and J. Vaara, Angew. Chem. Int. Ed. 43, 2678 (2004).CrossRefGoogle Scholar
  15. 15.
    X. Gu, M. Ji, S. H. Wei, and X. G. Gong, Phys. Rev. B 70, 205401 (2004).CrossRefGoogle Scholar
  16. 16.
    E. Fernández, L. C. Balbás, and J. M. Soler (Proceedings of Electronic Strcture: Principles and Applications, ESPA-2004; to be published).Google Scholar
  17. 17.
    H. Häkkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. 89, 033401 (2002). H. Häkkinen and U. Landman, Phys. Rev. B 62, R2287 (2000).CrossRefGoogle Scholar
  18. 18.
    W. Q. Tian, M. Ge, B. R. Sahu, D. Wang, T. Yamada, and S. Mashiko, J. Phys. Chem. A 108, 3806 (2004).CrossRefGoogle Scholar
  19. 19.
    L. Xiao and L. Wang, J. Phys. Chem. A 108, 8605 (2004).CrossRefGoogle Scholar
  20. 20.
    B. Soulé de Bas, M. J. Ford, and M. B. Cortie, Journal of Molecular Structure (Theochem) 686, 193 (2004).CrossRefGoogle Scholar
  21. 21.
    J. Zhao, J. Yang, and J. G. Hou, Phys. Rev. B 67, 085404 (2003).CrossRefGoogle Scholar
  22. 22.
    O. D. Häberlen, S. C. Chung, M. Stener and N. Rösch, J. Chem. Phys. 106, 5189 (1997).CrossRefGoogle Scholar
  23. 23.
    L. Xiao and L. Wang, Chem. Phys. Lett. 392, 452 (2004).CrossRefGoogle Scholar
  24. 24.
    Y. Shen and J. BelBruno, J. Phys. Chem. A 109, 512 (2005).CrossRefGoogle Scholar
  25. 25.
    R. M. Olson, et al, J. Am. Chem. Soc. 127, 1049 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Grömbeck and P. Broqvist, Phys. Rev. B 71, 73408 (2005).CrossRefGoogle Scholar
  27. 27.
    Y. Negishi, et al, J. Am. Chem. Soc. 126, 6518 (2004).CrossRefGoogle Scholar
  28. 28.
    H.-F. Zhang, et al, J. Phys. Chem. B 108, 12259 (2004).CrossRefGoogle Scholar
  29. 29.
    K. Palotás and B. Lazorovits and L. Szunyogh and P. Weinberger, Phys. Rev. B 70, 134421 (2004).CrossRefGoogle Scholar
  30. 30.
    S. Neukermans and E. Janssens and H. Tanaka and R. E. Silverans and P. Lievens, Phys. Rev. Lett. 90, 033401 (2003).CrossRefGoogle Scholar
  31. 31.
    M. B. Torres, E. M. Fernández, and L. C. Balbás, Phys. Rev. B 71, 155412 (2005).CrossRefGoogle Scholar
  32. 32.
    A. Sánchez, S. Abbet, U. Heiz, W.-D. Scheineider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 103, 9573 (1999).CrossRefGoogle Scholar
  33. 33.
    L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, and U. Landman, J. Am. Chem. Soc. 125, 10437 (2003).CrossRefGoogle Scholar
  34. 34.
    W. T. Wallace and R. L. Wetten, J. Am. Chem. Soc. 124, 7499 (2002).CrossRefGoogle Scholar
  35. 35.
    B. E. Salisbury, W. T. Wallace, and R. L. Wetten, Chem. Phys. 262, 131 (2000).CrossRefGoogle Scholar
  36. 36.
    Y. D. Kim and G. Ganteför, Chem. Phys. Lett. 383, 80 (2004).CrossRefGoogle Scholar
  37. 37.
    D. Stolcic, M. Fischer, G. Ganteför, Y. D. Kim, Q. Sun, P. J. Jena, J. Am. Chem. Soc. 125, 2848 (2003).CrossRefGoogle Scholar
  38. 38.
    T. H. Lee and K. M. Ervin, J. Phys. Chem. 98, 10023 (1994).CrossRefGoogle Scholar
  39. 39.
    A. L. de Oliveira, A. Wolf, and F. Schiith, Catal. Lett. 73, 157 (2001).CrossRefGoogle Scholar
  40. 40.
    T. Hayashi, K. Tanaka, and M. Haruta, J. Catal. 178, 566 (1998).CrossRefGoogle Scholar
  41. 41.
    C. T. Campbell and M. Paff, Surf. Sci. 143, 517 (1984).CrossRefGoogle Scholar
  42. 42.
    N. Saliba, D. Holmes-Parker, and B. E. Koelb, Surf. Sci. 410, 270 (1998).CrossRefGoogle Scholar
  43. 43.
    J.-H. Liu, A.-Q. Wang, Y.-S. Chi, H.-P. Lin, and C.-Y. Mou, J. Phys. Chem. B (Letters) 109, 40 (2005).Google Scholar
  44. 44.
    N. Bonini, A. Kokalj, A. Dal Corso, S. de Gironcoli, and S. Baroni, arXiv:condmat/0403371.Google Scholar
  45. 45.
    M. Todorova, K. Reuter, and M. Scheffler, arXiv:cond-mat/0501018.Google Scholar
  46. 46.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, Pablo Ordejón, and Daniel Sánchez Portal, J. Phys.: Condens. Matter 14, 2745 (2002).CrossRefGoogle Scholar
  47. 47.
    W. Kohn and L. J. Sham, Phys. Rev. 145, 561 (1965). See also, R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford UP, New York (1989).Google Scholar
  48. 48.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  49. 49.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5075 (1991).Google Scholar
  50. 50.
    N. Troullier and J. L. Martíns, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  51. 51.
    L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
  52. 52.
    E. M. Fernández, M. B. Torres, and L. C. Balbás, International J. of Quantum Chem. 99, 39 (2004).CrossRefGoogle Scholar
  53. 53.
    M. D. Morse, Chem. Rev. (Washington D.C.) 86, 1049 (1986).Google Scholar
  54. 54.
    L. C. Balbás, J. L. Martíns, and J. M. Soler, Phys. Rev. B 64, 165110 (2001).CrossRefGoogle Scholar
  55. 55.
    I. A. Solov'yov, A. V. Solov'yov, and W. Greiner, Phys. Rev. A, 65, 053203 (2002).CrossRefGoogle Scholar
  56. 56.
    A. Hirsch, Z. Chen, and H. Jiao, Angew. Chem. Int. Ed. 39, 3915 (2000).CrossRefGoogle Scholar
  57. 57.
    L. D. Socaciu, J. Hagen, J. Le Roux, D. Popolan, T. M. Bernhardt, and L. Wöste, J. Chem. Phys. 120, 2078 (2004).CrossRefGoogle Scholar
  58. 58.
    J. Hagen, L. D. Socaciu, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Wöste, R. Mitrić, H. Noack, and V. Bonacic-Koutecky, J. Am. Chem. Soc. 126, 3442 (2004).CrossRefGoogle Scholar
  59. 59.
    Y. D. Kim, G. Ganteför, Q. Sun, and P. Jena, Chem. Phys. Lett. 396, 69 (2004).CrossRefGoogle Scholar
  60. 60.
    A. Citra and L. Andrews, Journal of Molecular Structure (Theochem) 489, 95 (1999).CrossRefGoogle Scholar
  61. 61.
    D. M. Cox, R. Brickman, K. Creegan, and A. Kaldor, Z. Phys. D 19, 353 (1991).CrossRefGoogle Scholar
  62. 62.
    J. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heitz, T. M. Bernhardt, and L. Wöste, Phys. Chem. Chem. Phys. 4, 1707 (2002).CrossRefGoogle Scholar
  63. 63.
    M. Okamura, Y. Kitagawa, M. Haruta, K. Yamaguchi, Chem. Phys. Lett. 346, 163 (2000).CrossRefGoogle Scholar
  64. 64.
    H. Häkkinen and U. Landman, J. Am. Chem. Soc. 123, 9704 (2001).CrossRefGoogle Scholar
  65. 65.
    G. Mills, M. S. Gordon, and H. Metiu, Chem. Phys. Lett. 359, 493 (2002).CrossRefGoogle Scholar
  66. 66.
    B. Yoon, H. Häkkinen, and U. Landman, J. Phys. Chem. A 107, 4066 (2003).CrossRefGoogle Scholar
  67. 67.
    A. Franceschetti, S. J. Pennycook, and S. T. Pantelides, Chem. Phys. Lett. 374, 471 (2003).CrossRefGoogle Scholar
  68. 68.
    D. H. Wells, Jr., et al, J. Chem. Phys. 117, 10597 (2002).CrossRefGoogle Scholar
  69. 69.
    Z. P. Liu, P. Hu, and A. Alavi, J. Am. Chem. Soc. 124, 14770 (2002).CrossRefGoogle Scholar
  70. 70.
    E. Fernández, P. Ordejón, and L. C. Balbás, Chem. Phys. Lett. 408, 252 (2003).CrossRefGoogle Scholar
  71. 71.
    X. Wu, L. Senapati, S. K. Nayak, A. Selloni, and M. Hajaligol, J. Chem. Phys. 117, 4010 (2002).CrossRefGoogle Scholar
  72. 72.
    N. S. Phala, G. Klatt, and E. V. Steen, Chem. Phys. Lett. 395, 33 (2004).CrossRefGoogle Scholar
  73. 73.
    L. Jiang and Q. Xu, J. Phys. Chem. A 109, 1026 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • EVA MARÍA FERNÁNDEZ
    • 1
  • MARÍA BEGOÑA TORRES
    • 2
  • LUIS CARLOS BALBÁS
    • 3
  1. 1.Departamento de Física Teórica, Atómica y Óptica, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  2. 2.Departamento de Matemáticas y Computación, Escuela Politécnica SuperiorUniversidad de BurgosBurgosSpain
  3. 3.Departamento de Física Teórica, Atómica y Óptica, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations