Advertisement

UNDERSTANDING CHEMICAL REACTIONS INVOLVING NON-ADIABATIC TRANSITIONS: PREDISSOCIATION OF THE ELECTRONICALLY EXCITED Li-HF COMPLEX

  • A. AGUADO
  • M. PANIAGUA
  • CRISTINA SANZ
  • OCTAVIO RONCERO
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

The electronic predissociation from several excited electronic states of LiHF is studied using a time dependent Golden rule treatment, in an adiabatic representation. The potential energy surfaces used are those developed recently [J. Chem. Phys. 119 (2003) 10088] to simulate the experimental spectrum. The nonadiabatic couplings are calculated using highly correlated electronic functions and a finite difference method. It is found that the electronic predissociation process towards the ground electronic state yields to the formation of LiF products, with a large probability, > 90%. Also, the lifetimes associated to the A states are much shorter than for the B state. It is inferred that the electronic predissociation from the B and B’ electronic states should take place through the A electronic state, which acts as a doorway. Such process is explained by important ∑ – Π vibronic couplings appearing between the A, B and B’s.

Keywords

Electronic State Ground Electronic State Excited Electronic State Vibronic Coupling Quasibound State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Levine and R. B. Bernstein “Molecular Reaction Dynamics and Chemical Reactivity” Oxford University Press (1987).Google Scholar
  2. 2.
    J.-M. Mestdagh, B. Soep, M.-A. Gaveu and J.-P. Visitcot, Int. Rev. Phys. Chem. 22, 285 (2003).CrossRefGoogle Scholar
  3. 3.
    U. Brinkmann and H. Telle, J.Phys. B 10, 133 (1977).CrossRefGoogle Scholar
  4. 4.
    M. Hoffmeister, L. Potthast and H.J. Loesch, Chem. Phys. 78, 369 (1983).CrossRefGoogle Scholar
  5. 5.
    H.H. Dispert, M. W. Geis and P.R. Brooks, J. Chem.Phys. 70, 5317 (1979).CrossRefGoogle Scholar
  6. 6.
    H. Telle and U. Brinkmann, Mol. Phys. 39, 361 (1980).Google Scholar
  7. 7.
    M.G. Prisant, C.T. Rettner and R.N. Zare, J. Chem. Phys 75, 2222 (1981).CrossRefGoogle Scholar
  8. 8.
    C.T. Rettner and R.N. Zare, J. Chem. Phys. 77, 2416 (1982).CrossRefGoogle Scholar
  9. 9.
    P.S. Weiss, J.M. Mestdagh, M.H. Covinsky, B.A. Balko and Y.T. Lee, Chem. Phys. 126, 93 (1988).CrossRefGoogle Scholar
  10. 10.
    R. Düren, U. Lackschewitz and S. Milosevic, Chem. Phys. 126, 81 (1988).CrossRefGoogle Scholar
  11. 11.
    R. Düren, U. Lackschewitz, S. Milosevic and H.J. Waldapfel,J. Chem. Soc., Faraday Trans. 2 85, 1017(1989).Google Scholar
  12. 12.
    M. de Castro-Vítores, R. Candori, F. Pirani, V. Aquilanti, M. Menendez, M. Garay and A. González-Ureña, Phys. Chem. 100, 7997 (1996).CrossRefGoogle Scholar
  13. 13.
    M. de Castro-Vítores, R. Candori, F. Pirani, V. Aquilanti, M. Garay and A. González-Ureña, J. Phys. Chem.A 102, 9537 (1998).CrossRefGoogle Scholar
  14. 14.
    C. Jouvet, M. Boivineau, M.C. Duval and B. Soep, J. Phys.Chem. 91, 5416 (1987).CrossRefGoogle Scholar
  15. 15.
    B. Soep, C.J. Whitham, A. Keller and J.P. Visticot, Faraday Discuss. Chem. Soc. 91, 191 (1991).CrossRefGoogle Scholar
  16. 16.
    B. Soep, S. Abbés, A. Keller and J.P. Visticot,Chem. Phys. 96, 440 (1992).CrossRefGoogle Scholar
  17. 17.
    A. Keller, R. Lawruszczuk, B. Soep and J.P. Visticot, J. Chem.Phys. 105, 4556 (1996).CrossRefGoogle Scholar
  18. 18.
    R. Lawruszczuk, M. Elhanine and B. Soep, J. Chem. Phys. 108, 8374 (1998).CrossRefGoogle Scholar
  19. 19.
    K. Liu, J.C. Polanyi and S. Yang, J. Chem. Phys. 98, 5431 (1993).CrossRefGoogle Scholar
  20. 20.
    J.C. Polanyi and J-X. Wang, J. Phys. Chem. 99, 13691 (1995).CrossRefGoogle Scholar
  21. 21.
    X.Y. Chang, R. Ehlich, A.J. Hudson, P. Piecuch and J.C. Polanyi, Faraday Discuss. 108, 411 (1997).CrossRefGoogle Scholar
  22. 22.
    A.J. Hudson, H.B. Oh, J.C. Polanyi and P. Piecuch, J. Chem. Phys. 113, 9897 (2000).CrossRefGoogle Scholar
  23. 23.
    A.J. Hudson, F. Y Naumkin, H.B. Oh, J.C. Polanyi and S. Raspopov, Faraday Discuss. 118, 191 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Skowronek, R. Pereira and A. González-Ureńa, J. Chem. Phys. 107, 1668 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Skowronek, R. Pereira and A. González-Ureña, J. Phys. Chem. A 101, 7468 (1997).CrossRefGoogle Scholar
  26. 26.
    S. Skowronek, J.B. Jiménez and A. González-Ureña, Chem. Phys. Lett. 303, 275 (1999).CrossRefGoogle Scholar
  27. 27.
    V Stert, P. Farmanara, W. Radloff, F. Noack, S. Skowronek, J.B. Jiménez and A. González-Ureña, Phys. Rev. A59, 1727 (1999).Google Scholar
  28. 28.
    P. Farnamara, V Stert, W. Radloff, S. Skowronek and A. González-Ureña, Chem. Phys. Lett. 304, 127(1999).CrossRefGoogle Scholar
  29. 29.
    G.G. Balint-Kurti and R.N. Yardley, Faraday Discuss. Chem. Soc. 62, 77 (1977).CrossRefGoogle Scholar
  30. 30.
    M.M.L. Chen and H.F. Schaefer III, J. Chem. Phys. 72, 4376 (1980).CrossRefGoogle Scholar
  31. 31.
    A.Aguado, M. Paniagua, C. Sanz and O. Roncero, J. Chem. Phys. 119, 10088 (2003).CrossRefGoogle Scholar
  32. 32.
    P. Villarreal, S. Miret-Artés, O. Roncero, G. Delgado-Barrio, J.A. Beswick, N. Halberstadt and R.D. Coalson, J. Chem. Phys. 94, 4230 (1991).CrossRefGoogle Scholar
  33. 33.
    D.H. Zhang, J.Z.H. Zhang and Z. Bacić, J. Chem. Phys. 97, 3149 (1992).CrossRefGoogle Scholar
  34. 34.
    O. Roncero, N. Halberstadt and J.A. Beswick, Chem. Phys. Lett. 226, 82 (1994).CrossRefGoogle Scholar
  35. 35.
    O. Roncero, N. Halberstadt and J.A. Beswick, J. Chem. Phys. 104, 7554 (1996).CrossRefGoogle Scholar
  36. 36.
    U. Fano, Phys. Rev. 124, 1866 (1961).CrossRefGoogle Scholar
  37. 37.
    E.J. Heller, J. Chem. Phys. 68, 2066 (1978).CrossRefGoogle Scholar
  38. 38.
    E.J. Heller, J. Chem. Phys. 68, 3891 (1978).CrossRefGoogle Scholar
  39. 39.
    R.N. Zare “Angular Momentum” John Wiley and Sons, Inc. (1988).Google Scholar
  40. 40.
    M. Paniagua, A. Aguado, M. Lara and O. Roncero, J. Chem. Phys. 111, 6712 (1999).CrossRefGoogle Scholar
  41. 41.
    H-J. Werner, B. Follmeg and M. H. Alexander, J. Chem. Phys. 89, 3139 (1988).CrossRefGoogle Scholar
  42. 42.
    MOLPRO is a package of ab initio programs designed by H.-J. Werner and P.J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh W Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schüatz, H. Stoll, T Thorsteinsson, and D. L. Cooper, (version 2002.7).Google Scholar
  43. 43.
    R. Kosloff, J. Phys. Chem. 92, 2087 (1988).CrossRefGoogle Scholar
  44. 44.
    A. Aguado, M. Paniagua, M. Lara and O. Roncero, J. Chem. Phys. 107, 10085 (1997).CrossRefGoogle Scholar
  45. 45.
    M. Lara, A. Aguado, O. Roncero and M. Paniagua, J. Chem. Phys. 109, 9391 (1998).CrossRefGoogle Scholar
  46. 46.
    H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).CrossRefGoogle Scholar
  47. 47.
    C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero and R. Kosloff, J. Comp. Phys .94,59(1991).CrossRefGoogle Scholar
  48. 48.
    V A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 103, 2903 (1995).CrossRefGoogle Scholar
  49. 49.
    W.H. Miller, J. Chem. Phys. 61, 1823 (1974).CrossRefGoogle Scholar
  50. 50.
    D.H. Zhang and J.Z.H. Zhang, J. Chem. Phys. 101, 3672 (1994).Google Scholar
  51. 51.
    D. Neuhauser, J. Chem. Phys. 100, 9272 (1994).CrossRefGoogle Scholar
  52. 52.
    E.M. Goldfield, S.K. Gray and G.C. Schatz, J. Chem. Phys. 102, 8807 (1995).CrossRefGoogle Scholar
  53. 53.
    A. Aguado, M. Paniagua, M. Lara and O. Roncero, J. Chem. Phys. 106, 1013 (1997).CrossRefGoogle Scholar
  54. 54.
    G.G. Balint-Kurti, R.N. Dixon and C.C.Marston, J. Chem. Soc. Faraday Trans. 86, 1741 (1990).CrossRefGoogle Scholar
  55. 55.
    S. K. Gray and G.G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998).CrossRefGoogle Scholar
  56. 56.
    M. Paniagua, A. Aguado, M. Lara and O. Roncero, J. Chem. Phys. 109, 2971 (1998).CrossRefGoogle Scholar
  57. 57.
    R. Burcl, P. Piecuch, V, Spirko and O. Bludský, J. Mol. Strut. 591, 151 (2002).Google Scholar
  58. 58.
    A. W. Jasper, M. D. Hack, A. Chakraborty, D. G. Truhlar and P. Piecuch, J. Chem. Phys. 115, 7945 (2001).CrossRefGoogle Scholar
  59. 59.
    A. W. Jasper, M. D. Hack, D. G. Truhlar and P. Piecuch, J. Chem. Phys. 116, 8353 (2002).CrossRefGoogle Scholar
  60. 60.
    M.S. Topaler, D.G. Truhlar, X.Y. Chang, P. Piecuch and J.C. Polanyi, J. Chem. Phys. 108, 5349, 5378 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. AGUADO
    • 1
  • M. PANIAGUA
    • 1
  • CRISTINA SANZ
    • 2
  • OCTAVIO RONCERO
    • 2
  1. 1.Unidad Asociada UAM-CSIC, Departamento de Qu´mica F´sica, Facultad de Ciencias C–XIVUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Matemáticas y F´sica Fundamental, C.S.I.C.Unidad Asociada UAM-CSICMadridSpain

Personalised recommendations