Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)


We present a quantum-classical determination of stable isomers of Na*Arn clusters with an electronically excited sodium atom in 3p2P states. The excited states of Na perturbed by the argon atoms are obtained as the eigenfunctions of a single-electron operator describing the electron in the field of a Na+ Arn core, the Na+ and Ar atoms being substituted by pseudo-potentials. These pseudo-potentials include core-polarization operators to account for polarization and correlation of the inert part with the excited electron (1, 2) . The geometry optimization of the excited states is carried out via the basin-hopping method of Wales et al. (1, 2). The present study confirms the trend for small Na*Arn clusters in 3p states to form planar structures, as proposed earlier by Tutein and Mayne (4) within the framework of a first order perturbation theory on a “Diatomics in Molecules“ type model.


Excited State Potential Energy Surface Argon Atom Atomization Energy Sodium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben El Hadj Rhouma M., Berriche H., Ben Lakhdar Z., Spiegelman F., J. Chem. Phys. 116, 1839 (2002).CrossRefGoogle Scholar
  2. 2.
    Ben El Hadj Rhouma M., Berriche H., Ben Lakhdar Z., Spiegelman F., Int. J. Quant. Chem. 99, 495 (2004).CrossRefGoogle Scholar
  3. 3.
    Tutein A. B., Mayne H. R., J. Chem. Phys. 108, 308 (1998).CrossRefGoogle Scholar
  4. 4.
    Wales D. J., Doyle J. P. K., J. Phys. Chem. A 101, 5111 (1997).CrossRefGoogle Scholar
  5. 5.
    Böhmer W., Haensel R., Schwentner N., Boursey E., Chergui M., Chem. Phys. Lett. 59, 2752 (1973).Google Scholar
  6. 6.
    Gedanken A., Raz B., Jortner J., J. Chem. Phys. 59, 2752 (1973).CrossRefGoogle Scholar
  7. 7.
    Chergui M., Schwentner N., Chem. Phys. Lett. 219, 237 (1994).CrossRefGoogle Scholar
  8. 8.
    Resta L., Resta R., Phys. Rev. 19, 16833 (1979).Google Scholar
  9. 9.
    Froudakis G. E., Farantos S. C., Velegrakis M., J. Chem. Phys. 258, 13 (2000).CrossRefGoogle Scholar
  10. 10.
    Gaveau M. A., Briand M., Fournier P. R., Mestdagh J. M., Visticot J. P., Calvo F., Spiegelman F., Eur. Phys. J. D 21, 153 (2002).CrossRefGoogle Scholar
  11. 11.
    Perera L., Amar F. G., J. Chem. Phys. 93, 4884 (1990).CrossRefGoogle Scholar
  12. 12.
    Perera L., Amar F. G., J. Chem. Phys. 993, 4884 (1990). Fried L. E., Mukamel S., J. Chem. Phys. 996, 116 (1992).CrossRefGoogle Scholar
  13. 13.
    Hahn M. Y., Whetten R. L., Phys. Rev. Lett. 61, 1190 (1988).CrossRefGoogle Scholar
  14. 14.
    Tsoo C., Estrin D. A., Singer S. J., J. Chem. Phys. 96, 7977 (1992).CrossRefGoogle Scholar
  15. 15.
    Balling L. C., Wright J. J., J. Chem. Phys. 79, 2941(1983); 81, 675 (1984).CrossRefGoogle Scholar
  16. 16.
    Boatz J. A., Fajardo M. E., J. Chem. Phys. 101, 3472 (1994).CrossRefGoogle Scholar
  17. 17.
    Roncero O., Beswick J. A., Halberstadt N., Soep B., NATO ASI Series B 227, 471 (1990).Google Scholar
  18. 18.
    Batista V. S., Coker D. F., J Chem. Phys. 105, 2033 (1996).CrossRefGoogle Scholar
  19. 19.
    McCaffrey J. G., Kerins P. N., J. Chem. Phys. 106, 7885 (1997).CrossRefGoogle Scholar
  20. 20.
    Jungwirth P., Gerber R. B., J. Chem. Phys. 104, 5803 (1996).CrossRefGoogle Scholar
  21. 21.
    Kuntz P. J., in “Atom-Molecule Collision Theory” (Bernstein R.B. edr), Plenum Press, New York, 1979, p. 79; Kendrick B., Pack T., J. Chem. Phys. 102, 194 (1995).Google Scholar
  22. 22.
    Balling L. C., Harvey M. D., Dawson J. F., J. Chem. Phys. 69, 1670 (1978).CrossRefGoogle Scholar
  23. 23.
    Tam S., Fajardo M. E., J. Chem. Phys. 99, 854 (1993).CrossRefGoogle Scholar
  24. 24.
    Barthelat J.C., Durand Ph., Theor. Chim. Acta 38, 283 (1975).CrossRefGoogle Scholar
  25. 25.
    Jeung G. H., Phys. Rev. A 35, 26 (1987).CrossRefGoogle Scholar
  26. 26.
    Magnier S., Millié Ph., Dulieu O., Masnou-Seuuws F., J. Chem. Phys.98, 7113 (1993).CrossRefGoogle Scholar
  27. 27.
    Gross M., Spiegelman F., J. Chem. Phys. 108, 4148 (1998).CrossRefGoogle Scholar
  28. 28.
    Durand G., Duplan P., Spiegelman F., Z. Phys. D: At. Mol. Clusters 40, 177 (1997).CrossRefGoogle Scholar
  29. 29.
    Foucrault M., Millié Ph., Daudey J. P., J. Chem. Phys. 96, 1257 (1992).CrossRefGoogle Scholar
  30. 30.
    Müller W., Flesch J., Meyer W., J. Chem. Phys. 80, 3297 (1984).CrossRefGoogle Scholar
  31. 31.
    Ahmadi R., R⊘ggen G., J. Phys. B: At. Mol. Opt. Phys. 27, 5603 (1994).CrossRefGoogle Scholar
  32. 32.
    Aziz R. A., J. Chem. Phys. 99, 4518 (1993).CrossRefGoogle Scholar
  33. 33.
    Wales D. J., Scheraga H., Science 285, 1368 (1999).CrossRefGoogle Scholar
  34. 34.
    Wales D. J., Doye J. P. K., J. Chem. Phys. 101, 5111 (1997).Google Scholar
  35. 35.
    Northby J. A., J. Chem. Phys. 87, 6166 (1987).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 2
    • 3
  1. 1.Institut Préparatoire aux Etudes d’IngénieurLaboratoire d’Etude des Milieux Ionisés et Réactifs (EMIR)MonastirTunisie
  2. 2.Faculté des Sciences de TunisLaboratoire de Spectroscopie Atomique et Moléculaire et Applications (LSAMA)Tunisie
  3. 3.cLaboratoire de Physique Quantique (UMR 5626 du CNRS), IRSAMCUniversité Paul-SabatierToulouse CedexFrance

Personalised recommendations