Advertisement

COMPUTER SIMULATIONS IN HEAVY PARTICLE COLLISIONS

  • FRANCESCA O’ROURKE
  • RUTH PEDLOW
  • DERRICK CROTHERS
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

One area in atomic and molecular physics that computer modelling and its applications are extensively used is in ion-atom collisions. In this paper we consider computer simulations for various theoretical continuum-distorted-wave eikonal-initial-state (CDW-EIS) models used in the study of single ionization of neutral target atoms by fast highly charged ions. In our first study we examine ultra-low energy electrons for 3.6 MeV amu-1 Au53+ on helium, neon and argon. Doubly differential cross sections as a function of the longitudinal electron velocity for various transverse velocity cuts are obtained using the CDW-EIS model. A sharp asymmetric peak centred at a longitudinal velocity of zero is observed to emerge at ultra-low energies in all of the collisions studied.

Keywords

Single Ionization Reaction Microscopy Recoil Peak Eikonal Phase Eject Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Stolterfoht, R.D. DuBois, R.D. Rivarola Electron Emission in Heavy-Ion Atom Collsions, Vol 20, Toennies, ed., Springer-Verlag, Berlin, 1997.Google Scholar
  2. 2.
    R. Moshammer, J. Ullrich, M. Unverzagt, W. Schmidt, P. Jardin, R. E. Olson, R. Mann, R. Dörner, V. Mergel, U. Buck, H. Schmidt-Böcking Phys. Rev. Lett. 73, 3371 (1994).CrossRefGoogle Scholar
  3. 3.
    W. Schmitt, R. Moshammer, S.F.C. O’Rourke, H. Kollmus, L. Sarkadi, R. Mann, S. Hagmann, R.E. Olson, J. Ullrich Phys. Rev. Lett. 81, 4337 (1998).CrossRefGoogle Scholar
  4. 4.
    M. Schulz, R. Moshammer, A.N. Perumal, J. Ullrich J. Phys. B: At. Mol. Opt. Phys. 35, L161 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Fischer, R. Moshammer, M. Schulz, J. Ullrich J. Phys. B: At. Mol. Opt. Phys. 36, 3555 (2003).CrossRefGoogle Scholar
  6. 6.
    D.S.F. Crothers, J.F. McCann J. Phys. B: At. Mol. Phys. 16, 3229 (1983).CrossRefGoogle Scholar
  7. 7.
    P.D. Fainstein, V.H. Ponce, R.D. Rivarola J. Phys. B: At. Mol. Opt. Phys. 21, 287 (1988).CrossRefGoogle Scholar
  8. 8.
    L. Gulyás, P.D. Fainstein, A. Salin J. Phys. B: At. Mol. Opt. Phys. 28, 245 (1995).CrossRefGoogle Scholar
  9. 9.
    S.F.C. O’Rourke, I. Shimamura, D.S.F. Crothers Proc. R. Soc. Lond. A 452, 175 (1996).CrossRefGoogle Scholar
  10. 10.
    S.F.C. O’Rourke, R. Moshammer, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 30, 5281 (1997).CrossRefGoogle Scholar
  11. 11.
    I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964).CrossRefGoogle Scholar
  12. 12.
    Dz. Belkič J. Phys. B: At. Mol. Phys. 11, 3529 (1978).CrossRefGoogle Scholar
  13. 13.
    P.D Fainstein, R.D. Rivarola Phys. Lett. A 150, 23 (1990).CrossRefGoogle Scholar
  14. 14.
    M. McCartney, D.S.F. Crothers J. Phys. B: At. Mol. Opt. Phys. 26, 4561 (1993).CrossRefGoogle Scholar
  15. 15.
    S.F.C O’Rourke, W. Schmitt, R. Moshammer, J. Ullrich, B.S. Nesbitt, D.S.F. Crothers New Directions in Atomic Physics edited by Whelan et al., Kluwer Academic/Plenum Publishers, New York, p223 (1999).Google Scholar
  16. 16.
    C. McGrath, D.M. McSherry, M.B. Shah, S.F.C. O’Rourke, D.S.F. Crothers, G. Montgomery, H.B. Gilbody, C. Illescas, A. Riera (2000) J. Phys. B: At. Mol. Phys. 33, 3693 (2000).CrossRefGoogle Scholar
  17. 17.
    B.S. Nesbitt, M.B. Shah, S.F.C. O’Rourke, C. McGrath, J. Geddes, D.S.F. Crothers J. Phys. B: At. Mol. Opt. Phys. 33, 637 (2000).CrossRefGoogle Scholar
  18. 18.
    S.F.C. O’Rourke, D.S.F. Crothers J. Phys. B: At. Mol. Opt. Phys. 30, 2443 (1997).CrossRefGoogle Scholar
  19. 19.
    W. Schmitt, R. Moshammer, H. Kollmus, S. Hagmann, R. Mann, R.E. Olson, S.F.C. O’Rourke, J. Ullrich Physica Scripta T80, 335 (1999).CrossRefGoogle Scholar
  20. 20.
    R. Moshammer, P.D. Fainstein, M. Schultz, W. Schmitt, H. Kollmus, R. Mann, S. Hagmann, J. Ullrich Phys. Rev. Lett. 83, 4721 (1999).CrossRefGoogle Scholar
  21. 21.
    J. Fiol, R.E. Olson J. Phys. B: At. Mol. Opt. Phys. 37, 3947 (2004).CrossRefGoogle Scholar
  22. 22.
    M. Foster, D.H. Madison, J.L. Peacher, J. Ullrich J. Phys. B: At. Mol. Opt. Phys. 37, 3797 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Schulz, R. Moshammer, D. Fischer, J. Ullrich J. Phys. B: At. Mol. Opt. Phys. 37, 4055 (2004).CrossRefGoogle Scholar
  24. 24.
    B.H. Bransden, M.R.C. McDowell, Charge Exchange and The Theory of Ion-Atom Collisions (Oxford, Claredon, 1990).Google Scholar
  25. 25.
    D.S.F. Crothers J. Phys. B: At. Mol. Phys. 15, 2061 (1982).CrossRefGoogle Scholar
  26. 26.
    Belkič, Dz., Gayet, R., Salin, A., Phys. Rep. 56, 279 (1979).CrossRefGoogle Scholar
  27. 27.
    E. Clementi, C. Roetti At. Data. Nucl. Data. Tables 14, 177 (1974).Google Scholar
  28. 28.
    L. Gulyás, T. Kirchner, T. Shirai, M. Horbatsch Phys. Rev. A 62, 022702, (2000).CrossRefGoogle Scholar
  29. 29.
    E. Engel, S.H. Vosko Phys. Rev. A 47, 2800 (1993).CrossRefGoogle Scholar
  30. 30.
    D.M. McSherry, S.F.C. O’Rourke, R Moshammer and J. Ullrich Applications of Accelerators in Research and Industry, Edited by J.L. Duggan and L.L. Morgan The American Institute of Physics, 133 (2001).Google Scholar
  31. 31.
    V.E. Bubelev, D.H. Madison J. Phys. B: At. Mol. Opt. Phys. 26, 3541 (1993).CrossRefGoogle Scholar
  32. 32.
    P. Knowles, M. Schiitz, H.J. Werner, Ab initio Methods for Electron Correlation in Molecules in Modern Methods and Algorithms of Quantum Chemistry, Edited by Grotendorst, John von Neumann, Institute for computing, NIC series 88, 69 (2002).Google Scholar
  33. 33.
    J.F. McCann Thesis, Queen’s University Belfast (1984).Google Scholar
  34. 34.
    D.M. McSherry Thesis, Queen’s University Belfast (2001).Google Scholar
  35. 35.
    D.S.F. Crothers J. Phys. B: At. Mol. Opt. Phys. 19, 463 (1986).CrossRefGoogle Scholar
  36. 36.
    G.H. Olivera, C.A. Ramirez, R.D. Rivarola Phys. Rev. A. 47, 1000 (1993).CrossRefGoogle Scholar
  37. 37.
    S. Bhattacharya, R. Das, N.C. Deb, K. Roy, D.S.F. Crothers Phys. Rev. A. 68, 052702 (2003).CrossRefGoogle Scholar
  38. 38.
    M.F. Ciappina, W.R. Cravero, C.R. Garibotti J. Phys. B: At. Mol. Opt. Phys. 36, 3775 (2003).CrossRefGoogle Scholar
  39. 39.
    D.S.F. Crothers, D.M. McSherry, S.F.C. O’Rourke, M.B. Shah, C.McGrath, H.B. Gilbody Phys. Rev. Lett. 88, 053201 (2002).CrossRefGoogle Scholar
  40. 40.
    S.F.C. O’Rourke, D.M. McSherry, D.S.F. Crothers J. Phys. B: At. Mol. Opt. Phys. 36, 341 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • FRANCESCA O’ROURKE
    • 1
  • RUTH PEDLOW
    • 2
  • DERRICK CROTHERS
    • 3
  1. 1.Department of Applied Mathematics & Theoretical PhysicsQueen’s University BelfastBelfastN.Ireland
  2. 2.Department of Applied Mathematics & Theoretical PhysicsQueen’s University BelfastBelfastN.Ireland
  3. 3.Department of Applied Mathematics & Theoretical PhysicsQueen’s University BelfastBelfastN.Ireland

Personalised recommendations