• A. N. PETROV
  • A. V. TITOV
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)


The Generalized Relativistic Effective Core Potential (GRECP) method is described, which allows to simulate Breit interaction and finite nuclear models by an economic way with high accuracy. The corresponding GRECPs for the uranium, plutonium, eka-mercury (E112), eka-thallium (E113) and eka-lead (E114) atoms are generated. The accuracy of these GRECPs and of the RECPs of other groups is estimated in atomic numerical SCF calculations with Coulomb two-electron interactions and point nucleus as compared to the corresponding all-electron Hartree-Fock-Dirac- Breit calculations with the Fermi nuclear charge distribution. Different nuclear models and contributions of the Breit interaction between different shells are studied employing all-electron four-component methods.


Transition Energy Inner Core Nuclear Charge Core Electron Outer Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hofmann, S. and Münzenberg, G. Rev. Mod. Phys. 2000, 72, 733.CrossRefGoogle Scholar
  2. 2.
    Oganessian, Y. T. et al. Nature 1999, 400, 242.CrossRefGoogle Scholar
  3. 3.
    Oganessian, Y. T. Nature 2001, 413, 122.CrossRefGoogle Scholar
  4. 4.
    Schädel, M. (ed.). The Chemistry of Superheavy Elements (Kluwer, Dordrecht, 2003). 318 pp.Google Scholar
  5. 5.
    Hirao, K. and Ishikawa, Y. (eds.). Recent Advances in Relativistic Molecular Theory (World Scientific, Singapore, 2004). 328pp.Google Scholar
  6. 6.
    Schwerdtfeger, P. (ed.). Relativistic Electronic Structure Theory. Part 2. Applications, vol. 14 of Theoretical and Computational Chemistry (Elsevier, Amsterdam, 2004). xv+ 787 pp.Google Scholar
  7. 7.
    Mohr, P. J. Phys. Rep. 1997, 293, 227.CrossRefGoogle Scholar
  8. 8.
    Grant, I. P. and Quiney, H. M. Int. J. Quantum Chem. 2000, 80, 283.CrossRefGoogle Scholar
  9. 9.
    Reiher, M. and Hess, B. A. In: J. Grotendorst (ed.) Modern Methods and Algo rithms of Quantum Chemistry, vol. 1, pp. 451–477 (Jülich, 2000). [http://www.fz-].
  10. 10.
    Shabaev, V. M. Phys. Rep. 2002, 356, 119.CrossRefGoogle Scholar
  11. 11.
    Labzowsky, L. N. and Goidenko, I. In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure Theory. Part I. Fundamentals, pp. 401–467 (Elsevier, Amsterdam, 2002).Google Scholar
  12. 12.
    Visscher, L. Chem. Phys. Lett. 1996, 253, 20.CrossRefGoogle Scholar
  13. 13.
    Dyall, K. G. J. Comput. Chem. 2002, 23, 786.CrossRefGoogle Scholar
  14. 14.
    Visscher, L. J. Comput. Chem. 2002, 23, 759.CrossRefGoogle Scholar
  15. 15.
    Ermler, W. C., Ross, R. B., and Christiansen, P. A. Adv. Quantum Chem. 1988, 19, 139.CrossRefGoogle Scholar
  16. 16.
    Titov, A. V. et al. Study of parity violation effects .... This issue.Google Scholar
  17. 17.
    Tupitsyn, I. I., Mosyagin, N. S., and Titov, A. V. J. Chem. Phys. 1995, 103, 6548.CrossRefGoogle Scholar
  18. 18.
    Mosyagin, N. S., Titov, A. V., and Latajka, Z. Int. J. Quantum Chem. 1997, 63, 1107.CrossRefGoogle Scholar
  19. 19.
    Titov, A. V. and Mosyagin, N. S. Int. J. Quantum Chem. 1999, 71, 359.CrossRefGoogle Scholar
  20. 20.
    Phillips, J. C. and Kleinman, L. Phys. Rev. 1959, 116, 287.CrossRefGoogle Scholar
  21. 21.
    Abarenkov, I. V. and Heine, V. Philos. Mag. 1965, 12, 529.Google Scholar
  22. 22.
    Heine, V. and Abarenkov, I. V. Philos. Mag. 1964, 9, 451.Google Scholar
  23. 23.
    Titov, A. V. and Mosyagin, N. S. Structural Chem. 1995, 6, 317.CrossRefGoogle Scholar
  24. 24.
    Titov, A. V. and Mosyagin, N. S. Russ. J. Phys. Chem. 2000, 74, Suppl. 2, S376. [arXiv: physics/0008160].Google Scholar
  25. 25.
    Mosyagin, N. S., Eliav, E., Titov, A. V., and Kaldor, U. J. Phys. B 2000, 33, 667.CrossRefGoogle Scholar
  26. 26.
    Isaev, T. A., Mosyagin, N. S., Kozlov, M. G., Titov, A. V., Eliav, E., and Kaldor, U. J. Phys. B 2000, 33, 5139.CrossRefGoogle Scholar
  27. 27.
    Titov, A. V. Doctorate Thesis (Petersburg Nuclear Physics Institute, RAS, Russia, 2002).Google Scholar
  28. 28.
    Titov, A. V., Mitrushenkov, A. O., and Tupitsyn, I. I. Chem. Phys. Lett. 1991, 185, 330.CrossRefGoogle Scholar
  29. 29.
    Petrov, A. N., Mosyagin, N. S., Titov, A. V., and Tupitsyn, I. I. J. Phys. B 2004, 37, 4621.CrossRefGoogle Scholar
  30. 30.
    Mosyagin, N. S. and Titov, A. V. J. Chem. Phys. 2005, 122, 234106.CrossRefGoogle Scholar
  31. 31.
    Titov, A. V., Mosyagin, N. S., Alekseyev, A. B., and Buenker, R. J. Int. J. Quantum Chem. 2001, 81, 409.CrossRefGoogle Scholar
  32. 32.
    Labzowsky, L. N., Klimchitskaya, G. L., and Dmitriev, Y. Y. Relativistic Effects in the Spectra of Atomic Systems (Institute of Physics Publishing, Bristol and Philadel-phia, 1993). 340 pp.Google Scholar
  33. 33.
    Quiney, H. M., Grant, I. P., and Wilson, S. J. Phys. B 1987, 20, 1413.CrossRefGoogle Scholar
  34. 34.
    Lindroth, E., Mårtensson-Pendrill, A.-M., Ynnerman, A., and Öster, P. J. Phys. B 1989, 22, 2447.CrossRefGoogle Scholar
  35. 35.
    Bratzev, V. F., Deyneka, G. B., and Tupitsyn, I. I. Bull. Acad. Sci. USSR, Phys. Ser. 1977, 41, 173.Google Scholar
  36. 36.
    Tupitsyn, I. I. and Petrov, A. N. in 5th Session of the V.A. Fock School on Quantum and Computational Chemistry, p. 62 (Novgorod the Great, 2002).Google Scholar
  37. 37.
    Nash, C. S., Bursten, B. E., and Ermler, W. C. J. Chem. Phys. 1997, 106, 5133. [Erratum: JCP 111 (1999) 2347].CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
  • A. N. PETROV
    • 1
  • A. V. TITOV
    • 1
    • 2
  1. 1.Petersburg Nuclear Physics InstituteSt-PetersburgRussia
  2. 2.Physics DepartmentSt-Petersburg State UniversitySt-PetersburgRussia

Personalised recommendations