Skip to main content

Unusual Tetrapyrrole Pigments of Photosynthetic Antennae and Reaction Centers: Specially-tailored Chlorophylls

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Primary charge separation in photosynthesis is initiated by a few specialized chlorophyll (Chl) or bacteriochlorophyll (BChl) molecules in the reaction centers. Excitation of the primary donors leads to reduction of the primary and secondary electron acceptors, which often contain structurally distinct Chl and BChl derivatives: such specially-tailored Chls include ‘prime-type,’ ‘metal-free’ and ‘Zn-containing’ Chls. The functions of many such pigments have long remained unclear, but recently the roles of some have been elucidated. Here, a short overview is given on the minor but specially-tailored Chls that function as key components in photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Kobayashi M, Kise H, Hara M, WakaoN and Shimada K (1998a) Pigment composition of the reaction center complex isolated from an acidophilic bacterium Acidiphilium rubrum grown at pH 3.5. Photomed Photobiol 20:85–87

    CAS  Google Scholar 

  • Akiyama M, Kobayashi M, Kise H, Takaichi S, Watanabe T, Shimada K, Iwaki M, Itoh S, Ishida N, Koizumi M, Kano H, Wakao N and Hiraishi A (1998b) Acidiphilium rubrum and zinc-bacteriochlorophyll, part 1: Molecular structure of the zinc-containing bacteriochlorophyll. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol 2, pp 731–734. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Akiyama M, Miyashita H, Watanabe T, Kise H, Miyachi S and Kobayashi M (2001) Detection of chlorophyll d' and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17:205–208

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S and Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers—Unusual pigment composition in the reaction centers of a chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74:97–107

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Gotoh T, Kise H, Miyashita H, Mimuro M and Kobayashi M (2003) Stoichiometries of chlorophyll d'/PS I and chlorophyll á/PS II in a chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Phycol 51, in press

    Google Scholar 

  • Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll-deficient mutant of maize. Photobiochem Photobiophys 2:199–207

    CAS  Google Scholar 

  • Bazzaz MB and Brereton RG (1982) 4-Vinyl-4-desethyl chlorophyll a: A new naturally occurring chlorophyll. FEBS Lett 138:104–108

    Article  CAS  Google Scholar 

  • Bazzaz MB, Govindjee and Paolillo DJ Jr (1974) Biochemical, spectral and structural study of olive necrotic 8147 mutant of Zea mays L. Z Pfanzenphysiol Bd 72:181–192

    CAS  Google Scholar 

  • Bazzaz MB, Bradley CV and Brereton RG (1982) 4-Vinyl-4-desethyl chlorophyll a: Characterisation of a new naturally occurring chlorophyll using fast atom bombardment, field desorption and ‘in beam’ electron impact mass spectroscopy. Tetrahedron Lett 23:1211–1214

    Article  CAS  Google Scholar 

  • Braumann T, Vasmel H, Grimme LH and Amesz J (1986) Pigment composition of the photosynthetic membrane and reaction center of the green bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 848:83–91

    Article  CAS  Google Scholar 

  • Brockman H Jr and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch microbiol 136:17–19

    Article  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992a) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc Natl Acad Sci USA 89:8135–8139

    Article  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992b) The Photosystem I-like P840-reaction center of the green S-bacteria is a homodimer. Biochim Biophys Acta 1101:154–156

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Dörnemann D and Senger H (1982) Physical and chemical properties of chlorophyll RCI extracted from Photosystem I of spinach leaves and from algae. Photochem Photobiol 35:821–826

    Google Scholar 

  • Fajer J, Brune DC, Davis MS, Forman A and Spaulding LD (1975) Primary charge separation in bacterial photosynthesis: Oxidized chlorophylls and reduced pheophytin. Proc Natl Acad Sci USA 72:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Fiedor L, Rosenbach-Belkin V and Scherz A (1992) The stereospecific interaction between chlorophylls and chlorophyllase. J Biol Chem 26:22043–22047

    Google Scholar 

  • Fuller RC, Sprague SG, Gest H and Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349

    Article  CAS  Google Scholar 

  • Geskes C, Hartwich G, Scheer H, Mantele W and Heinze J (1995) An electrochemical and spectroelectrochemical investigation of metal-substituted bacteriochlorophyll a. J Am Chem Soc 117:7776–7783

    Article  CAS  Google Scholar 

  • Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41:17–21

    Article  CAS  Google Scholar 

  • Goericke R and Repeta DJ (1992) The pigments of Prochlorococcus marinus: The presence of divinyl chlorophyll a and b in a marine procaryote. Limnol Oceanogr 37:425–433

    Article  CAS  Google Scholar 

  • Gounaris K, Chapman DJ, Booth P, Crystall B, Giorgi IB, Klug DR, Porter G and Barber J (1990) Comparison of the D1/D2/ cytochrome b559 reaction centre complex of photosystem two isolated by two different methods. FEBS Lett 265:88–92

    Article  PubMed  CAS  Google Scholar 

  • Hastings G, Durrant JR, Barber J, Porter G and Klug DR (1992) Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry 31:7638–7647

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Schoedl T, Remigy H and Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  PubMed  CAS  Google Scholar 

  • Helfrich M, Schoch S, Lampert U, Cmeil E and Rüdiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a'. Eur J Biochem 219:267–275

    Article  PubMed  CAS  Google Scholar 

  • Helfrich M, Schoch S, Schäfer W, Ryberg M and Rüdiger W (1996) Absolute configuration of protochlorophyllide a and substrate specificity of NADPH—Protochlorophyllide oxidoreductase. J Am Chem Soc 118:2606–2611

    Article  CAS  Google Scholar 

  • Helfrich M, Ross A, King GC, Turner AG and Larkum AWD (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410:262–272

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47:161–180

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A, Matsuzawa Y, Kanbe T and Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546

    PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Iwaki M, Noguti T, Kawamori A, Mino H, Hu Q, Iwasaki I, Miyashita H, Kurano KN, Miyachi S and Shen R (2001) Photosystem I and II reaction centers of a new oxygenic organism Acaryochloris marina that use chlorophyll. In: PS 2001: Proceedings of the 12th International Congress on Photosynthesis, S6-028. CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial Photo-system I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann KJ, Dutton PL, Netzel TL, Leigh JS and Rentzepis PM (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188:1301–1304

    Article  CAS  PubMed  Google Scholar 

  • Kirmaier C, Blankenship RE and Holten D (1986) Formation and decay of radical-pair P+ I- in Chloroflexus aurantiacus reaction centers. Biochim Biophys Acta 850:275–285

    Article  CAS  Google Scholar 

  • Klimov VV and Krasnowskii AA (1981) Pheophytin as the primary electron acceptor in Photosystem 2 reaction centres. Photosynthetica 15:592–609

    CAS  Google Scholar 

  • Klimov VV, Shuvalov VA, Krakhmaleva IN, Klevanik AV and Krasnovskii AA (1977a) Photoreduction of bacteriopheo-phytin b in the primary light reaction of Rhodopseudomonas viridis chromatophores. Biokhimiya 42:519–530

    CAS  Google Scholar 

  • Klimov VV Klevanik Ay Shuvalov VA and Krasnovsky AA (1977b) Reduction of pheophytin in the primary light reaction of Photosystem II. FEBS Lett 82:183–186

    Article  CAS  Google Scholar 

  • Klimov VV Allkhverdiev SI, Demeter S and Krasnovsky AA (1977c) Photoreduction of pheophytin in Photosystem 2 of chloroplasts with respect to the redox potential of the medium. Dokl Akad Nauk SSSR 249:227–230

    Google Scholar 

  • Klimov VV Shuvalov VA and Heber U (1985) Photoreduction of pheophytin as a result of electron donation from the water-splitting system to Photosystem-II reaction centers. Biochim Biophys Acta 809:345–350

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T and Murata N (1988) Chlorophyll a'/P700 and pheophytin a/P680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936:81–89

    Article  CAS  Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and β-carotene content in the D l/D2/cytochrome b-559 reaction center complex from spinach. FEBS Lett 260:138–140

    Article  CAS  Google Scholar 

  • Kobayashi M, van de Meent EJ, Amesz J, Ikegami I and Watanabe T (1991) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96

    Article  CAS  Google Scholar 

  • Kobayashi M, van de Meent EJ, Oh-oka H, Inoue K, Itoh S, Amesz J and Watanabe T (1992) Pigment composition of heliobacteria and green sulfur bacteria. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 393–396. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kobayashi M, Iwaki M, Tomo T, Kise H, Satoh K and Itoh S (1995) Heat-induced pigment alteration in the Photosystem I and II reaction center. In: Mathis P (ed) Photosynthesis: From Light to Biosphere Vol 2, pp 139–142. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M and Kise H (1998a) Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 365:, 199–203

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamura M, Akutsu S, Miyake J, Kara M, Akiyama M and Kise H (1998b) Successfully controlled isomerization and pheophytinization of bacteriochlorophyll b by weak acid in the dark in vitro. Anal Chim Acta 361:285–290

    Article  CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Kise H, Takaichi S, Watanabe T, Shimada K, Iwaki M, Itoh S, Ishida N, Koizumi M, Kano H, Wakao N and Hiraishi A (1998c) Structural determination of the novel Zn-containing bacteriochlorophyll in Acidiphilium rubrum. Photomed Photobiol 20:75–80

    CAS  Google Scholar 

  • Kobayashi M, Yamamura M, Akiyama M, Kise H, Inoue K, Hara M, Wakao N, Yahara K and Watanabe T (1998d) Acid resistance of [Zn]-Bacteriochlorophyll a from an acidophilic bacterium Acidiphilium rubrum. Anal Sci 14:1149–1152

    Article  CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Watanabe T and Kano H (1999a) Exotic chlorophylls as key components of photosynthesis. Current Topics in Plant Biology 1:17–35

    CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Yamamura M, Kise H, Wakao N, Ishida N, Koizumi M, Kano H and Watanabe T (1999b) Comparison of physicochemical properties of metallobacteriochlorophylls and metallochlorophylls. Z Phys Chem 213:207–214

    CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2,6-phytadienol. Photosynth Res 63:269–280

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1956) Preliminary notes on the reversible absorption change at 705 μm in photosynthetic organisms. Biochim Biophys Acta 22:399–401

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blanken- ship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: Structural implications and relations to other photo-systems. Proc Natl Acad Sci USA 90:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Watanabe T, Kobayashi M and Ikegami I (1992) Presence of two chlorophyll a' molecules at the core of Photosystem I. Biochim Biophys Acta 1099:74–80

    Article  CAS  Google Scholar 

  • Manning WM and Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Masuda T, Inoue K, Masuda M, Nagayama M, Tamaki A, Ohta H, Shimada H and Takamiya K (1999) Magnesium insertion by magnesium chelatase in the biosynthesis of zinc-bacterio— chlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. J Biol Chem 274:33594–33600

    Article  PubMed  CAS  Google Scholar 

  • Mattioli TA, Williams JC, Allen JP and Robert B (1994) Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaemides: Identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry 33:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84:2570–2574

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: Studies using time- resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H and Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456:27–34

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Murakami A, Kawai H, Adachi K, Miyashita H, Sakawa T and Mimuro M (2001) Chlorophyll d in Rhodophyceae: Presence and function. In: PS 2001: Proceedings 12th International Congress on Photosynthesis, S31-004. CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Murata N, Araki S, Fujita Y, Suzuki K, KuwabaraT and Mathis P (1986) Stoichiometric determination of pheophytin in Photosystem II of oxygenic photosynthesis. Photosynth Res 9:63–70

    Article  CAS  Google Scholar 

  • Nagashima KVP, Matsuura K, Wakao N, Hiraishi A and Shimada K (1997) Nucleotide sequences of genes cording for photo-synthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria. Plant Cell Physiol 38:1249–1258

    PubMed  CAS  Google Scholar 

  • Nakamura A and Watanabe T (1998) HPLC determination of photosynthetic pigments during greening of etiolated barley leaves. Evidence for the biosynthesis of chlorophyll a'. FEBS Lett 426:201–204

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A and Watanabe T (2001) Separation and determination of minor photosynthetic pigments by reversed-phase HPLC with minimal alteration of chlorophylls. Anal Sci 17:503–508

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Tanaka S and Watanabe T (2001) Normal-phase HPLC separation of possible biosynthetic intermediates of pheophytin a and chlorophyll a. Anal Sci 17:509–513

    Article  PubMed  CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112

    Article  PubMed  CAS  Google Scholar 

  • Neerken S and Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507:278–290

    Article  PubMed  CAS  Google Scholar 

  • Neerken S, Schmidt KA, Aartsma TJ and Amesz J (1999) Dynamics of energy conversion in reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low temperature. Biochemistry 38:13216–13222

    Article  PubMed  CAS  Google Scholar 

  • Neerken S, Aartsma TJ and Amesz J (2000) Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis. Biochemistry 39:3297–3303

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Kitamura M, Tamura S and Watanabe T (1994) Purification and substrate specificity of chlorophyllase from Chlorella regularis. Chem Lett:69–72

    Google Scholar 

  • Nuijs AM, van Dorssen RJ, Duysens LNM and Amesz J (1985a) Excited states and primary photochemical reaction in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci USA 82:6865–6868

    Article  Google Scholar 

  • Nuijs AM, Vasmel H, Joppe HLP, Duysens LNM and Amesz J (1985b) Excited states and primary charge separation in the pigment system of the green photosynthetic bacterium Prosthecochloris aestuarii as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 807:24–34

    Article  CAS  Google Scholar 

  • Olson JM, Prince RC and Brune DC (1977) Reaction-center complexes from green bacteria. Brookhaven Symp Biol 28:238–246

    Google Scholar 

  • Parson WW, Clayton RK and Cogdell RJ (1975) Excited states of photosynthetic reaction centers at low redox potentials. Biochim Biophys Acta 387:265–278

    Article  PubMed  CAS  Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M and Amesz J (2000) Composition and optical properties of reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64:27–39

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80:80–84

    Article  PubMed  CAS  Google Scholar 

  • Prince RC and Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactions in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423:357–362

    Article  PubMed  CAS  Google Scholar 

  • Prince RC, Gest H and Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810:377–384

    Article  CAS  Google Scholar 

  • Rebeiz CA, Belanger FC, Freyssinet G and Saab DG (1980) Chloroplast biogenesis. XXIX. The occurrence of several novel chlorophyll a and b chromophores in higher plants. Biochim Biophys Acta 590:234–247

    Article  PubMed  CAS  Google Scholar 

  • Ricketts TR (1966) Magnesium 2,4-divinylphaeoporphyrin a 5 monomethyl ester, a protochlorophyll-like pigment present in some unicellular flgellates. Phytochemistry 5:223–229

    Article  CAS  Google Scholar 

  • Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72:2251–2255

    Article  PubMed  CAS  Google Scholar 

  • Scheer H and Hartwich G (1995) Bacterial reaction centers with modified tetrapyrrol chromophores. In: Blankenship RE, Madiagan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 649–663. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shuvalov VA, Vasmel H, Amesz J and Duysens LNM (1986) Picosecond spectroscopy of the charge separation in reaction centers of Chloroflexus aurantiacus with selective excitation of the primary electron donor. Biochim Biophys Acta 851:361–368

    Article  CAS  Google Scholar 

  • Steiner R, Cmiel E and Scheer H (1983) Chemistry of bacterio-chlorophyll b: Identification of some (photo)oxidation products. Z Naturforsch C 38, 748–752

    Google Scholar 

  • Strain HH and Manning WM (1942) Isomerization of chlorophylls a and b. J Biol Chem 146:275–276

    CAS  Google Scholar 

  • Sybesma C and Vredenberg WJ (1963) Evidence for a reaction center P840 in the green photosynthetic bacterium Chloropseudomonas ethylicum. Biochim Biophys Acta 75:439–441

    Article  PubMed  CAS  Google Scholar 

  • van de Meent EJ, Kleinherenbrink FAM and Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015:223–230

    Article  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, Van Veelen PA, Amesz J and Watanabe T (1991) Identification of 81-hydroxy-chlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, Van Veelen PA, Otte SCM, Inoue K, Watanabe T and Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102:371–378

    Article  Google Scholar 

  • van Gorkom HJ (1974) Identification of the reduces primary electron acceptor of Photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347:439–442

    Article  PubMed  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyllin an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    CAS  Google Scholar 

  • Wakao N, Hiraishi A, Shimada K, Kobayashi M, Takaichi S, Iwaki M and Itoh S (1999) Discovery, characteristics, and distribution of Zinc-BChl in aerobic acidophilic bacteria including Acidiphilium species and other related acidophilic bacteria. In: Peschek GA, Loffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 745–750. Plenum Publishing Co., New York

    Google Scholar 

  • Wasielewski MR, Norris JR, Shipman LL, Lin C-P and Svec WA (1981) Monomeric chlorophyll a enol: Evidence for its possible role as the primary electron donor in Photosystem I of plant photosynthesis. Proc Natl Acad Sci USA 78:2957–2961

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 287–315. CRC Press, Boca Raton

    Google Scholar 

  • Watanabe T, Machida K, Suzuki H, Kobayashi M and Honda K (1985a) Photoelectrochemistry of chlorophylls. Coord Chem Rev 64:207–224

    Article  CAS  Google Scholar 

  • Watanabe T, Nakazato M, Mazaki H, Hongu A, Konno M, Saitoh S and Honda K (1985b) Chlorophyll a epimer and pheophytin a in green leaves. Biochim Biophys Acta 807:110–117

    Article  CAS  Google Scholar 

  • Webber AN and Lubitz W (2001) P700: The primary electron donor of Photosystem I. Biochim Biophys Acta 1507:61–79

    Article  PubMed  CAS  Google Scholar 

  • Witt HT, Rumberg B, Schmidt-Mende P, Siggel U, Skerra B, Vater J and Weikard J (1965) Angew Chem (Intern Ed) 4:799

    Article  CAS  Google Scholar 

  • Wu SM and Rebeiz CA (1985) Chloroplast biogenesis. Molecular structure of chlorophyll b (E489 F666). J Biol Chem 206:3632–3634

    Google Scholar 

  • Wu SM, Mayasich, JM and Rebeiz CA (1989) Chloroplast biogenesis: Quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry. Anal Biochem 178:294–300

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yamamura M, Kobayashi M, Inoue K, Kara M, Wakao N, Kano H, Watanabe T, Akiyama M and Kise H (1998) Acidiphilium rubrum and zinc-bacteriochlorophyll, part 3: High resistance of zinc-bacteriochlorophyll a to acid. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol 2, pp 739–742. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kobayashi, M., Akiyama, M., Kise, H., Watanabe, T. (2006). Unusual Tetrapyrrole Pigments of Photosynthetic Antennae and Reaction Centers: Specially-tailored Chlorophylls. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_4

Download citation

Publish with us

Policies and ethics