Skip to main content

Cerebral Monitoring in the Operating Room and the Intensive Care Unit — An Introductory for the Clinician and a Guide for the Novice Wanting to Open a Window to the Brain

  • Chapter
Cerebral Monitoring in the OR and ICU
  • 469 Accesses

Abstract

An evoked potential differs from the EEG mainly in two ways:

1. The EEG is a random, continuous signal, which arises from the ongoing activity of the outer layers of the cortex. An evoked potential is the brain’s response to a repetitive stimulus along a specific nerve pathway.

2. EEG signals range from 10–200 milliVolt (mV). Evoked potentials are smaller in amplitude (1-5-20 μ Volt requiring precise electrode positioning and special techniques (signal averaging) to extract the specific response from the underlying EEG ‘noise’. The technique of signal averaging, as originally described by Dawson in 1954 [69J, has been further developed in computer processing. The technique is now used by applying a stimulus repeatedly — preferably at randomized intervals — and to record the evoked response over the corresponding area of the brain, averaging out mathematically the change over the number of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison T, McCarthy G, Wood CC. The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroenceph Clin Neurophysiol 1992; 84: 301–314.

    PubMed  CAS  Google Scholar 

  2. Chiappa KH. Evoked Potentials in Clinical Medicine. New York, 1983.

    Google Scholar 

  3. Dawson GE. A summation technique for the detection of small evoked potentials. Electroencephalog Clin Neurophysiol 1954; 6: 65.

    CAS  Google Scholar 

  4. Burke B, Skuse NF, Lethlean HK. Cutanerous and muscle efferent components of the cerebral potential evoked by electrical stimulation of human peripheral nerves. Electroenceph Clin Neurophysiol 1981; 51: 579.

    Article  PubMed  CAS  Google Scholar 

  5. Stöhr M, Petruch F. Somatosensory evoked potential following stimulation of the trigeminal nerve in man. J neurol Neurosurg Psychiat 1970; 220: 95–98.

    Google Scholar 

  6. Desmedt JE, Brunko E. Functional organization of far-field and cortical components in normal adults. In: Desmedt JE, ed. Clinical uses of Cerebral, Brainstem, and Spinal Somatosensory Evoked Potentials Basel: Karger, 1980: 27–50.

    Google Scholar 

  7. Chiappa KH, Choi SH, Young RR. Short-latency somatosensory evoked potentials following median nerve stimulation in patients with neurological lesions. In: Desmedt JE, ed. Clinical Uses of Cerebral, Brainstem, and Spinal Somatosensory Evoked Potentials Basel: Karger, 1980: pp 1–8.

    Google Scholar 

  8. Gracco RQ. Scalp evoked potentials evoked by median nerve stimulation; subcortical potentials, travelling waves, and somatosensory potential. In: Desmedt JE, ed. Clinical Use of Cervical, Brainstem and Spinal Somatosensory Evoked Potentials Basel: Karger, 1980: 1–14.

    Google Scholar 

  9. Grundy BL. Evoked potential monitoring. In: Blitt CD, ed. Monitoring in Anesthesia and Critical Care Medicine New York: Churchill Livingstone, 1985: 345–411.

    Google Scholar 

  10. Freye E, Buhl R, Schenk GK. Somatosensory-evoked potentials (SEP) are effected differently by mu-and kappa-selective opioids in the dog. Funct Neurol 1987; 2: 281–292.

    PubMed  CAS  Google Scholar 

  11. Hassler R. Über die Zweiteilung der Schmerzempfindung und des Schmerzgefühl. In: R. J, Keidel WD, Herz A, Steichele C, eds. Schmerz Stuttgart: Thieme, 1972: 105.

    Google Scholar 

  12. Prior PF. Monitoring cerebral function Long-term Recordings of Cerebral Electrical Activity Amsterdam: North Holland Biomedical Press, 1979.

    Google Scholar 

  13. Stoeckel H, Schwilden H, Lauwen PM, Schüttler J. EEG indices for evaluation of depth of anaesthesia. Br J Anaesth 1980; 53: 117.

    Google Scholar 

  14. Kochs E, Schulte am Esch J, Treede RD, Bromm B. Modulation of pain-related somatosensory evoked potentials in general anesthesia. Anesth Analg 1991; 71: 225–230.

    Google Scholar 

  15. Kochs E, Bischoff P. Anesthesia and somatosensory evoked potentials. In: Schulte am Esch J, Kochs E, eds. Central nervous system monitoring in anesthesia and intensive care. New Dehli: Macmillan; 1994, p. 146–175.

    Google Scholar 

  16. Kochs E, Treede RD, Schulte am Esch J, Bromm B. Modulation of pain-related somatosensory evoked potentials by general anesthesia. Anesth Analg 1990; 71: 225–2230.

    PubMed  CAS  Google Scholar 

  17. Freye E, Hartung E, Schenk GK. Somatosensory-evoked potentials during block of surgical stimulation with propofol. Br J Anaesth 1989; 63: 357–359.

    PubMed  CAS  Google Scholar 

  18. Benedetti G, Butler SA. Event related potentials correlates of analgesia. Comparison of fentanyl, acupuncture and nitrous oxide. Pain 1982; 14: 327.

    PubMed  Google Scholar 

  19. Freye E, Buhl R, Ciaramelli F. Somatosensory-evoked potentials as predictors of the analgesic efficacy of nalbuphine, a mixed narcotic analgesic. Pain Clin 1987; 1: 225–331.

    Google Scholar 

  20. Chapmann CR, Jacobsen RC. Assessment of analgesic states: Can evoked potentials play a role? In: Bromm B, ed. Pain Measurement in Man. Amsterdam: Elsevier; 1984, p. 233–356.

    Google Scholar 

  21. Chapmann CR, Chen ACN, Harkins SW. Brain evoked potentials as correlates of laboratory pain: A review and perspective. In: Bonica JJ, Liebeskind JC, Albe-Fessard DG, eds. Advances in Pain Research and Therapy. New York: Raven Press; 1979, p. 791–803.

    Google Scholar 

  22. Freye E, Neruda B, Falke K. EEG-Powerspektren und evozierte Potentiale unter Alfentanil/Midazolam-Analgosedierung bei Intensivpatienten. Anästhesiol Intensivmed Notfallmed Schmerzther 1991; 26: 384–388.

    PubMed  CAS  Google Scholar 

  23. Hume AL, Ducking MA. Central and spinal somatosensory conduction times during hypothermic cardiopulmonary bypass and some observations on the effects of fentanyl and isoflurane anesthetics. Electroenceph Clin Neurophysiol 1980; 65: 46–58.

    Google Scholar 

  24. Desmedt JE, Cheon G. Centrral somatosensory conduction in man: Neural generatiors and interpeak latencies of the far field components recorded from nerck and right or left scalp and earlobe. Electroenceph Clin Neurophysiol 1980; 59: 382–403.

    Google Scholar 

  25. Anziska B, Gracco RQ, Look AW, Feld AW. Somatosensory far field potentials. Studies in patients with focal neurological disease. Electroenceph Clin Neurophysiol 1978; 1: 51–68.

    Google Scholar 

  26. Allison T, Goff WR, Williamson PD, van Gilder H. On the neural origin of early component of the human somatosensory evoked potential. In: Desmedt JE, ed. Clinical Use of Cerebral, Brainstem, and Spinal Somatosensory Evoked potentials Basel: Karger, 1978.

    Google Scholar 

  27. Stöhr M. Somatosensory evoked potentials-SEP. In: Maurer M, Lowitcsh K, Stöhr M, eds. Evozierte Potentiale. Stuttgart: Enke; 1988, p. 130–178.

    Google Scholar 

  28. Riffel B, Stöhr M, Körner S. Spinal and cortical evoked potentialas following stimulation of the posterior tibila nerrve in the diagnosis nad localization of spinal cord diseases. Electroenceph Clin Neurophysiol 1984; 58: 400–409.

    PubMed  CAS  Google Scholar 

  29. Stöhr M, Dichgans J, Voigft K, Buettner UW. The signifiicance of somatosensory-evoked potentials for localization of unilateral lesions within the cerebral hemisphere. J Neurol Sci 1983; 61: 49–63.

    PubMed  Google Scholar 

  30. Dorfman LJ, Bosley TM. Age related changes in peripheral and central nerve conduction in man. Neurology 1979; 29: 38–44.

    PubMed  CAS  Google Scholar 

  31. Jörg H, Meldorn HM, Podenski R. Cerebral refractory period of somatosensory system: EEG and clinical findings before and after vascular surgery in cerebrovascular disease. Expt Med 1980; 526: 181.

    Google Scholar 

  32. Robertson CS, Foltz RB, Grossman RG, Goodman JC. Protection against experimental ischemic spinal cord injury. J Neurosurg 1986; 64: 633–642.

    PubMed  CAS  Google Scholar 

  33. Grundy BL. Monitoring of sensory evoked potentialas during neurosurgical operations. methods and applications. Neurosurg 1982; 11: 556–562.

    CAS  Google Scholar 

  34. Randzeus PA. Intraoperative monitoring of evoked potentials. Ann NY Acad Sci 1982; 388: 308–311.

    Google Scholar 

  35. Schenk GK, Engelmeier M-P, Lodemann E, Pach J. Vigilanz, hirnorganisches Psychosyndrom und Pharmakotherapie, Aspekte der Reversilbilität. In: Bente D, Coper H, Kanowski S, eds. Hirnorganische Psychosyndrome im Alter Berlin. Heidelberg, New York: Springer, 1982: 74–113.

    Google Scholar 

  36. Mosko S, Pierce S, Holowach J, Sassni JF. Normal brain stem auditory evoked potentials recorded in sleep apneics during wakening and as a function of arterial oxygen saturation during sleep. Electroenceph Clin Neurophysiol 1981; 51: 477–485.

    Article  PubMed  CAS  Google Scholar 

  37. Little JR, Lesser RP, Lueders H, Furlan AJ. Brain stem auditory evokesd potentials in posterior circulation surgery. Neurosurgery 1983; 12: 496.

    PubMed  CAS  Google Scholar 

  38. Jensen EW, Nygaard M, Henneberg SW. On-line analysis of the middle latency auditory evoked potentials (MLAEP) for monitoring depth of anaesthesia in laboratory rats. Med Eng Phys 1998; 20: 722–728.

    PubMed  CAS  Google Scholar 

  39. Mignon A, Lecharnym JB, Fievet RR et al. Comparison of an Auditory Evoked Potentials Index (AAI) and a Bispectral Index (BIS) for Determining the Depth of Anesthesia Produced by Remifentanil in Cardiac Surgery. Anesthesiology 2001; 95: A 728.

    Google Scholar 

  40. Welschbillig S, Plantade N, Martinon C et al. Performance of the AAI index of AEP to predict loss of consciousness during propofol anesthesia. Anesthesiology 2001; 95: A 565.

    Google Scholar 

  41. Jensen EW, Litvan H, Caminal P et al. Comparison of the BIS and the Auditory Evoked Potentials Index (AAI) during propofol anesthesia for cardiac surgery. Anesthesiology 2000; 93: A 1370.

    Google Scholar 

  42. Tang J, Ma H, White PF, Wender RH. Comparative evaluation of Auditory Evoked Potential Index (AAI) and Bispectral Index™ (BIS™) values during induction and emergence from ambulatory anesthesia. Anesthesiology 2003; 99: A 347.

    Google Scholar 

  43. Halliday HL. Evoked Potentials in Clinical Testing Edinburgh: Churchill Livingstone, 1983.

    Google Scholar 

  44. Grundy BL. Intraoperative application of evoked responses. In: Owen JH, Davis H, eds. Evoked Potential Testing. Clinical Applications. Orlando: Grune & Stratton; 1985, p. 159–212.

    Google Scholar 

  45. Boyd SG, Rothwell JC, Cowan JMA et al. A method of monitoring function in cortico-spinal pathways during scleorsis surgery with a note on motor conduction velocity. J Neurol Neurosurg Psychiat 1986; 49.

    Google Scholar 

  46. Rosenstein J, Wang SD, Symon I, Suzuki K. Central conduction time and clinical guide for aneurysmal subarachnoid hemorrhage. J Neurosurg 1985; 62: 25–30.

    PubMed  CAS  Google Scholar 

  47. Trojaborg W, Jorgensen EO. Evoked cortical responses in potentials with “isolectric” EEG. Electroenceph Clin Neurophysiol 1973; 35: 301–309.

    Article  PubMed  CAS  Google Scholar 

  48. Goldie WD, Chiappa KH, Young RR, Brooks EG. Brainstem auditory evoked and short-latency somatosensory evoked responses in brain death. Neurology 1981; 31: 248–256.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Freye, E. (2005). Cerebral Monitoring in the Operating Room and the Intensive Care Unit — An Introductory for the Clinician and a Guide for the Novice Wanting to Open a Window to the Brain. In: Freye, E. (eds) Cerebral Monitoring in the OR and ICU. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4486-0_2

Download citation

Publish with us

Policies and ethics