Advertisement

Physiologic Effects of Hyperbaric Oxygen on Hemodynamics and Microcirculation

  • Daniel Mathieu
  • Raphael Favory
  • François Collet
  • Jean-Christophe Linke
  • Francis Wattel

Abstract

Hyperbaric oxygen (HBO) in the pressure range used for therapeutic purposes induces haemodynamic changes both at the macro- and micro circulatory levels. In normal subjects, systemic haemodynamic changes mainly concern the heart rate (an effect related to both the barometric and the oxygen pressures). Arterial blood pressure tends to increase slightly. Cardiac output is maintained or moderately decreased due to compensating responses which may fail in patients with pre-existing cardiac failure. At the microcirculatory level, HBO causes vasoconstriction with a decrease in microcirculatory blood flow but with no decrease of oxygen pressure in the tissues. This hyperoxic vasoconstriction does not appear in previously hypoxic areas where the microcirculatory blood flow remains unchanged. Consequently, oxygen pressure in the tissues increase to levels close to normal. The reappearance of cyclic vasomotion seems to indicate an improvement in the local metabolic condition. The haemodynamic and microcirculatory effects of HBO appear to be effective in compensating ischemic conditions, particularly in cases of heterogeneous microcirculatory hypoperfusion

Keywords

haemodynamics hyperbaric bradycardia hyperoxic bradycardia hyperoxic hypertension cardiac output regional circulation cerebral blood flow coronary blood flow renal blood flow hepatosplanchnic blood flow muscle blood flow microcirculation capillary blood flow hyperoxic vasoconstriction vasomotion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broussolle B, « Physiologie cardiovasculaire et plongée ». In: Broussolle B., Physiologie et médecine de la plongée. Paris, Ellipses, 1992, p 155–167.Google Scholar
  2. 2.
    Evans D.E. « Cardiovascular effects ». In: Shilling C.W, Carlston C.B, Mathias R.A, The Physican’s guide to diving medecine, New York, Plenum Press, 1984, p 99–109Google Scholar
  3. 3.
    Fagraeus L, Hesser C.M, Linnarsson D. « Cardiorespiratory responses to graded exercise at increased ambient air pressure ». Acta. Physiol.Scand, 1974, 91: 259–274.PubMedGoogle Scholar
  4. 4.
    Shida K.K., Lin Y.C. » Contribution of environmental factors in development of hyperbaric bradycardia ». J. Appl. Physiol, 1981, 50: 731–735.PubMedGoogle Scholar
  5. 5.
    Kenmure A.C., Murdoch W.R., Hutton I., Cameron J.V. « Hemodynamic effects of oxygen at 1 and 2 ATA pressure in healthy subjects ». J.Appl. Physiol., 1972. 32: 223–226.PubMedGoogle Scholar
  6. 6.
    Daly W.J., Bondurant S. « Effects of oxygen breathing on the heart rate, blood pressure and cardiac index of normal man resting, with reactive hyperemia and after atropine » J. Clin. Invest., 1962, 41: 126–132.PubMedGoogle Scholar
  7. 7.
    Fagraeus L., Linnarsson D. « Heart rate in the hyperbaric environment after autonomic blockade ». Acta Physiol. Scand., 1973, 9: 260–264.Google Scholar
  8. 8.
    Fagraeus L. « Cardiorespiratory and metabolic functions during exercise in the hyperbaric envirornrnent ». Acta Physiol. Scand., 1974, suppl. 414: 1–40.Google Scholar
  9. 9.
    Doubt T.J., Evans D.E. « Effects of hyperbaric oxygen exposure at 31.3 ATA on spontaneously beating cat hearts ». J Appl. Physiol., 1983, 55: 139–145.PubMedGoogle Scholar
  10. 10.
    Bergo G.W., Risberg J., Tyssebotn I. « Effect of 5 bar oxygen on cardiac output and organ blood flow in conscious rats ». Undersea Biomed. Resp., 1988, 15: 457–470.Google Scholar
  11. 11.
    Fukuda Y., Sato A., Suzuki A., Trzebski A. « Anatonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxyde levels in the rat ». J.Auton. Nerv. Syst., 1989, 28: 61–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Hesse E., Kanstrup I.L., Christensen N.J., Ingemann-Hansen T., Hansen J.F., Halkjaer-Kristensen J., Petersen F.B. « Reduced norepinephrine response to dynamic exercise in human subjects during O2 breathing ». J. Appl. Physiol., 1981, 51: 176–178.PubMedGoogle Scholar
  13. 13.
    Howley E.T., Cox R.H., Welch H.G., Adams R.P. « Effect of hyperoxia on metabolic and catecholamine responses to prolonged exercise. » J. Appl. Physiol., 1983, 54: 59–63.PubMedGoogle Scholar
  14. 14.
    Lahiri S., Mokashi A., Mulligan E., Nishino T. « Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. » J Appl. Physiol., 1981, 51: 55–61.PubMedGoogle Scholar
  15. 15.
    Matalon S., Nesarajah M.S., Farhi E. « Pulmonary and circutatory changes in conscious sheep exposed to 100 % oxygen at 1 ATA ». J. Appl. Physiol., 1982, 53: 110–116.PubMedGoogle Scholar
  16. 16.
    Whitehorn W.V., Edelmann A., Hitchcock F.A. « The cardiovascular responses to the breathing of 100 percent oxygen at normal barometric pressure ». Am. J. Physiol. 1946, 146: 61–65.Google Scholar
  17. 17.
    Alvery D.A, Brody S. « Cardiovascular and respiratory changes in man during oxygen breathing ». Acta Physiol. Scand., 1948, 15: 140–149.CrossRefGoogle Scholar
  18. 18.
    Richards D.W., Barach A.L. « Prolonged residence in high oxygen atmospheres. Effects on normal individuals and on patients with chronic cardiac and pulrnonary insufficiency ». Quart. J. Med., 1934, 3: 437–466.Google Scholar
  19. 19.
    Behnke A.R., Johnson R.S., Poppen J.R., Motley E.P. « The effect of oxygen on man at pressures from 1 to 4 atmospheres ». Am. J. Physiol, 1935, 110: 565–572.Google Scholar
  20. 20.
    Behnke A.R., Forbes H.S., Motley E.P. « Circulatory and visual effects of oxygen at 3 atmospheres pressure ». Am. J. Physiol., 1936, 114: 436–442.Google Scholar
  21. 21.
    Kenmure A.C., Murdoch W.R., Beattie A.D., Marshall J.C., Cameron A.J. « Circulatory and metabolic effects of oxygen in myocardial infarction ». Brit. Med. J., 1968, 4: 360–364.PubMedGoogle Scholar
  22. 22.
    Dooley J.W., Mehm W.J. « Non invasive assessment of the vasoconstrictive effects of hyperoxygenation ». J.Hyperbaric Med., 1989, 4: 177–187.Google Scholar
  23. 23.
    Torbati D., Parolla D., Lavy S. « Organ blood flow, cardiac output, arterial blood pressure and vascular, resistance in rats exposed to various oxygen pressures ». Aviat. Space Environ. Med., 1979, 50: 256–263.PubMedGoogle Scholar
  24. 24.
    Onarheim J., Tyssebotn I. « Effect of high ambient pressure and oxygen tension on organ blood flow in the anesthesized rat ». Undersea Biomed. Res., 1980, 7: 47–60.PubMedGoogle Scholar
  25. 25.
    Smith C.W., Lehan P.H., Monks J. « Cardiopulmonary manifestations with high O2 tensions at atmospheric pressure ». J. Appl. Physiol, 1963, 18: 849–853PubMedGoogle Scholar
  26. 26.
    Eggers G.W., Paley H.W., Leonard J.J., Warren J.V. « Hemodynarnic responses to oxygen breathing in man ». J.Appl. Physiol, 1962, 17: 75–79.Google Scholar
  27. 27.
    Whalen R.E., Saltzman H.A., Holloway D.H., Mc Intosch H.D., Sieker H.O., Brown I.W. « Cardiovascular and blood gas responses to hyperbaric oxygenation ». Am. J. Cardiol., 1965, 15: 638–646.PubMedCrossRefGoogle Scholar
  28. 28.
    Andersen A., Hillestad L. « Hemodynamic responses to oxygen breathing and the effects of pharmacological blockade ». Acta. Med. Scand., 1970, 188: 419–424.PubMedGoogle Scholar
  29. 29.
    Keys A., Stapp J.P., Violente A. « Responses in size, output and efficiency of the human heart to acute alteration in tne composition of inspired air. » Am. J. Physiol., 1943, 138: 763–771.Google Scholar
  30. 30.
    Otis A.B., Rahn H., Brontman M., Mullins L.J., Fenn W.O. « Ballistocardiographic study of changes in cardiac output due to respiration ». J.Clin. Invest., 1946, 25: 413–421.PubMedGoogle Scholar
  31. 31.
    Dripps R.D., Comroe J.H. « The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals ». Am J. Physiol., 1947, 149: 277–291.Google Scholar
  32. 32.
    Cameron A.J., Hutton I, Kenmure A.C., Murdoch W.R. « Haemodynamic and metabolic effects of hyperbaric oxygen in myocardial infarction ». Lancet, 1966, 2: 833–837.PubMedCrossRefGoogle Scholar
  33. 33.
    Smetnev A.S., Efuni S.N., Rodinov V.V., Ashurova L.D., Aslibekyan L.S. « Hyperbaric oxygenation in the complex of therapeutic measures for chronic ischemic heart disease ». Kardiologiya, 1979, 19: 41–46.PubMedGoogle Scholar
  34. 34.
    Deepika K., Myers R.A., Cooley R.A. « Cardiovascular effects of hyperbaric oxygen in septic patients ». Undersea Biomed. Res., 1982, 9: 44.Google Scholar
  35. 35.
    Savitt M.A., Rankin J.S., Elberry J.R., Owen C.H., Camporesi E.M. « Influence of hyperbaric oxygen on left ventricular contractility, total coronary blood flow, and myocardial oxygen consumption in the conscious dog ». Undersea Hyper Med. 1994, 21: 169–183.Google Scholar
  36. 36.
    Ishikawa K., Kanamasa K., Yamakado, et al « Myocardial contractile force at high coronary arterial oxygen tension in dogs ». Cardiol. Res. 1981, 15: 227–232.CrossRefGoogle Scholar
  37. 37.
    Ask J., Tyssebotn I. « Positive ionotropic effect on the rat atrial myocardium compressed to 5, 10 and 30 bar ». Acta. Physiol. Scand, 1988. 134: 277–283.PubMedGoogle Scholar
  38. 38.
    Ask J., Tyssebotn I. « Positive ionotropic effect on human atrial myocardium exposed to 30 bar ». Undersea Biomed. Res, 1991, 18: 138.Google Scholar
  39. 39.
    Gennser M., Ornhagen H. « Effects of hydrostatic pressure and inert gases on twitch tension ». Undersea Biomed. Res, 1989., 16: 415–426.PubMedGoogle Scholar
  40. 40.
    Kioschos JM., Behar VS., Saltzman H.A., et al « Effect of hyperbaric oxygenation on left ventricular function ». Am. J. Physiol. 1969, 216: 161–166.PubMedGoogle Scholar
  41. 41.
    Abel F., Mc Nahee J., Cone D., Clarke D, Tao J. « Effect of hyperbaric oxygen on ventricular performances, pulmonary blood volume and systemic and pulmonary vascular resistance ». Undersea Hyper Med, 2000, 27: 67–73Google Scholar
  42. 42.
    Mathieu D. « Effets hémodynamiques et microcirculatoires de l’oxygénothérapie hyperbare ». Thèse, Université de Lille II, 1994.Google Scholar
  43. 43.
    Rico D.M., Svendsen F.J., Huffer C., Smith M., Pierce R., Winters C.J., Vesely D.L. « Increased release of the N-terminus of the atrial natriuretic factor prohormone with increasing absolute atmospheres of pressure in a hyperbaric chamber and reversal with oxygen therapy ». Chest, 1990, 98: 1403–1407PubMedGoogle Scholar
  44. 44.
    Kety S.S., Schmidt C.F. « The effects of altered arterial tensions of CO2 and O2 on cerebral blood flow and cerebral 02 consumption of normal young men ». J.Clin. Invest., 1948, 27: 484–492.PubMedCrossRefGoogle Scholar
  45. 45.
    Jacobson I., Harper A.M., Mc Dowall D.G. « The effects of oxygen at 1 and 2 atmospheres on the blood flow and oxygen uptake of the cerebral cortex ». Surg. Gynecol. Obstet., 1969, 119: 737–742.Google Scholar
  46. 46.
    Bergofsky E.H., Bertun P. « Response of regional circulations to hypoxia ». J. Appl. Physiol., 1966, 21, 567–572.PubMedGoogle Scholar
  47. 47.
    Hordnes C., Tyssebotn I. « Effect of high ambient pressure and oxygen tension on organ blood flow in conscious trained rats ». Undersea Biomed. Res., 1985, 12: 115–128.PubMedGoogle Scholar
  48. 48.
    Bergo G.W., Tyssebotn I. « Regional cerebral blood flow during exposure to 1, 3, 5 bar oxygen ». Undersea Biomed. Res, 1989, 16: 75–76.Google Scholar
  49. 49.
    Bean J.W. « Effect of oxygen at increased pressure ». Physio. Rev., 1945, 25: 1–147.Google Scholar
  50. 50.
    Lambertsen C.J., Kough R.H., Cooper D.Y., Emmel G.L., Loeschcke H.H., Schmidt C.F. « Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation, and cerebral metabolism ». J. Appl. Physiol., 1953, 5: 471–486.PubMedGoogle Scholar
  51. 51.
    Torbati D. « Oxygen and brain physiologic functions: a review. » In: Bove A.A., Bachrach A.J., Greenbaurn L.J., Underwater and hyperbaric physiology IX., Bethesda. Undersea and Hyperbaric Medical Society, 1987, p 659–690.Google Scholar
  52. 52.
    Ledingham I.M., Mc Dowall D.G., Harper A.M. « Cerebral cortical blood flow under hyperbaric conditions ». In: Brown I.W., Cox B.G., Proceedings of the third International Conference on Hyperbaric Medicine, Washington, National Academy of Sciences, 1966, p 243–249.Google Scholar
  53. 53.
    Torbati D., Carey M.E. « Effect of normobaric hyperoxia on regional cerebral blood flow before and, after brain missile wounding in anesthetised cats ». Undersea Biomed. Res., 1989, 16: 78–79.Google Scholar
  54. 54.
    Daniell H.B., Bagwell E.E. « Effects of high oxygen a coronary blood flow and heart force ». Arn. J. Physiol., 1968, 214: 1414–1459.Google Scholar
  55. 55.
    Podlesch I., Herpfer G.E. « Coronary blood flow under high oxygen pressure ». In: Wada J., Iwa T., Proceedings cf the Fourth International Congress on Hyperbaric Medicine., Tokyo, Igaku Shoin, 1970, p 231–235.Google Scholar
  56. 56.
    Winter P.M., Williams B.T., Roding B., Schenk W. « Coronary artery blood flow and oxygen transport under hyperbaric oxygenation ». In: Wada J, Iwa T., Proceedings of the Fourth International Congress on Hyperbaric Medicine., Tokyo, Igaku Shoin, 1970, p 228–230.Google Scholar
  57. 57.
    Hutter J.F., Piper H.M., Spieckermann P.G. « An index for estimation of oxygen consumption in rat heart by hemodynamic parameters ». Am. J. Physiol., 1985, 249: H729–H734.PubMedGoogle Scholar
  58. 58.
    Savitt M.A., Elbeery J.R., Owen C.H., Rankin J.S., Camporesi E.M. « Mechanism of decreased coronary and systemic blood flow during hyperbaric oxygenation. » Undersea Biomed. Res, 1989, 16: 50–51.Google Scholar
  59. 59.
    Norman J.N., Shearer J.R., Napper A.J., Robertson I.M., Smith G. « Action of oxygen on renal circulation ». Am. J. Physiol., 1974, 227: 740–744.PubMedGoogle Scholar
  60. 60.
    Horstman D.H., Gleser M., Delehunt J. « Effects of altering O2 delivery on VO2 of isolated, working muscle ». Am. J. Physiol., 1976, 230: 327–334.PubMedGoogle Scholar
  61. 61.
    Risberg J., Tyssebotn I. « Hyperbaric exposure to a 5 ATA He-N2-O2 atmosphere affects the cardiac, function and organ blood flow distributron in awake trained rats ». Undersea Biomed. Res, 1986, 13: 77–90.PubMedGoogle Scholar
  62. 62.
    Guyton C. « Local control of blood flow by the tissues and humoral regulation ». In: Medical Physiology, Saunders, London. 1991: 185–193.Google Scholar
  63. 63.
    Dollery C.T., Hill D.W., Mailer C.M., Ramalho P.S. « High oxygen pressure and the retinal blood-vessels ». Lancet. 1964, 11: 291–292.CrossRefGoogle Scholar
  64. 64.
    Aber G.M., Harris A.M., Bishop J.M. « The effect of acute changes in inspired oxygen concentration on cardiac, respiratory and renal function in patients with chronic obstructive airways disease ». Clin. Sci., 1964, 26: 133–143.PubMedGoogle Scholar
  65. 65.
    Bird A.D, Telfer M.B. « The effect of oxygen at 1 and 2 atmospheres on resting forearm blood flow ». Surg. Gynecol. Obstet., 1966, 123: 260–268.PubMedGoogle Scholar
  66. 66.
    Reich T., Tuckman J., Naftchi N.E., Jacobson J.H. « Effect of normo-and hyperbaric oxygenation on resting and postexercise calf blood flow ». Surg. Gynecol. Obstet. 1966, 123: 260–268.Google Scholar
  67. 67.
    Lindbom L., Arfors K.E. « Mechanism and site of control for variation in the number of perfused capillaries in skeletal muscle ». Int. J. Microcirc. Clin. Exp., 1985, 4: 19–30.PubMedGoogle Scholar
  68. 68.
    De Mey J.G., Vanhoutte P.M. « Heterogenous behaviour of the canine arterial and venous wall ». Circ. Res., 1982, 51: 439–447.PubMedGoogle Scholar
  69. 69.
    Bertuglia S., Coluantuoni A., Coppini G., Intaglietta M. « Hypoxia and hyperoxia induced changes in arteriolar vasomotion in skeletal muscle microcirculation ». Am. J. Physiol., 1991, 260: H362–H372.PubMedGoogle Scholar
  70. 70.
    Ellworth M.L., Liu A., Dawant B., Popel A.S., Pittman R.N. « Analysis of vascular pattern and dimension in arteriolar networks of the retractor muscle in youg hamsters ». Microvasc. Res., 1987, 34: 168–183.CrossRefGoogle Scholar
  71. 71.
    Sullivan S.M., Johnson P.C. « Effect of oxygen on blood flow autoregulation in cat sartorius muscle ». Am. J. Physiol., 1981, 241: H807–H815.PubMedGoogle Scholar
  72. 72.
    Duling B.R., Berne R.M. « Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow ». Circ. Res., 1970, 27: 669–678.PubMedGoogle Scholar
  73. 73.
    Duling B.R. « Microvascular responses to alterations in oxygen tension ». Circ. Res., 1972, 31: 481–489.PubMedGoogle Scholar
  74. 74.
    Granger H.J., Goodman A.H., Granger D.N. « Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog ». Circ. Res., 1976 38: 379–385.PubMedGoogle Scholar
  75. 75.
    Sonny M., Sam A.D., Piantadosi C.A., Klitzman B. « Effects of hyperbaric oxygenation on arteriolar diameter in rat ». Undersea Hyperbaric Med, 1993, 20: 64.Google Scholar
  76. 76.
    Hansen M., Madsen J. « Estimation of relative changes in resting muscle blood flow by washout: the effect of oxygen ». Scand. J. Clin. Lab. Invest., 1973, 31: 133–139.PubMedGoogle Scholar
  77. 77.
    Hoogerwerf N., Westerhof N., Van den bos G.C. « Oxygen does not change arteriolar and venular diameters in rat mesentery ». Pflügers Arch. 1987, 410: S29.Google Scholar
  78. 78.
    Tesfamarian B., Halpern W. « Modulation of adrenergic responses in pressurized resistance arteries by flow ». Am. J. Physiol. 1987, 253: H1112–H1119.Google Scholar
  79. 79.
    Hoogerwerf N., Van der linden P.J.W., Spikema P. « Effect of oxygen and flow on the diameter of the femoral artery of the rabbit ». Blood Vessels. 1989, 26: 360–367.PubMedCrossRefGoogle Scholar
  80. 80.
    Lindbom L., Tuma R.F., Arfors K.E. « Influence of oxygen on perfused capillary density and capillary red cell velocity in rabbit skeletal muscle ». Microvasc. Res., 1980, 19: 197–208.PubMedCrossRefGoogle Scholar
  81. 81.
    Whalen W.J., Nair P. « Intracellular PO2 and its regulation in resting skeletal muscle of guinea pig ». Circ. Res. 1967, 21: 251–261.PubMedGoogle Scholar
  82. 82.
    Whalen W.J., Nair P. « Skeletal muscle PO2: effect of inhaled and topically applied O2 and CO2 ». Am. J. Physiol. 1970, 218: 973–980.PubMedGoogle Scholar
  83. 83.
    Jackson W.F. « Arteriolar oxygen reactivity: where is the sensor ? » Am. J. Physiol., 253 (Heart Circ. Physio. 22). 1987: H1120–H1126.PubMedGoogle Scholar
  84. 84.
    Jackson W.F. « Lipoxygenase inhibitors block O2 responses of hamster cheek pouch arterioles ». Am. J. Physiol. 1988, 255: H711–H716.PubMedGoogle Scholar
  85. 85.
    Bean J.W. « Cerebral O2 in exposures to O2 at atmospheric and higher pressure and influence of CO2 ». Am. J. Physiol. 1961, 201: 1192–1198.PubMedGoogle Scholar
  86. 86.
    Wells C.H., Goodpasturf J.E., Horrigan D.J. « Tissue gas measurements during hyperbaric oxygen exposure ». In Smith G. (ed). Proceedings of the Sixth International Congress on Hyperbaric Medicine. Aberdeen University Press, Aberdeen, 1977, 118–124.Google Scholar
  87. 87.
    Colantuoni A., Bertuglia S., Integlietta M. « Microvessel diameter changes during hemorragic shock in unanesthetized hamsters ». Microvasc. Res., 1985, 30: 133–145.PubMedCrossRefGoogle Scholar
  88. 88.
    Damber J.E., Lindahl O., Selstam G., Tenland T. « Testicular blood flow measured with a laser Doppler flowmeter: acute affects of catecholamines ». Acta. Physiol. Scand., 1982, 115: 209–215.PubMedGoogle Scholar
  89. 89.
    Lahiri S., Mulligan E., Andronikov S., Shirahata M., Mokaski A. « Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat ». J. Appl. Physiol., 1987, 62: 1924–1931.PubMedGoogle Scholar
  90. 90.
    Jackson W.F. « Prostaglandins do not mediate arteriolar oxygen reactivity ». Am. J. Physiol., 1986, 250: H1102–H1108.PubMedGoogle Scholar
  91. 91.
    Wei E.P., Ellis E.F., Kontos H.A. « Role of prostaglandins in pial arteriolar response to CO2 and hypoxia ». Am. J. Physiol. 1980, 238: H226–H230.PubMedGoogle Scholar
  92. 92.
    Rubanyi G.M., Vanhoutte P.M. « Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor ». Am. J. Physiol. 1986, 250: H822–H827.PubMedGoogle Scholar
  93. 93.
    Jackson W.F. « Arteriolar oxygen reactivity is inhibited by leukotriene antagonists ». Am. J. Physiol. 1989, 257: H1565–H1572.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniel Mathieu
    • 1
  • Raphael Favory
    • 1
  • François Collet
    • 1
  • Jean-Christophe Linke
    • 1
  • Francis Wattel
    • 1
  1. 1.Service d’Urgence Respiratoire, de Réanimation Médicale et de Médecine Hyperbare, Hôpital CalmetteCentre Hospitalier Régional UniversitaireLilleFrance

Personalised recommendations