Skip to main content

Abstract

A large body of pathophysiological evidence supports the beneficial role of HBO in reversing a delayed healing process. Daily experience supports its use in the clinical management of patients with non-healing wounds. TCPO2 measurement is a valuable and helpful method for patient selection, follow-up and treatment monitoring.

The ECHM, in its 7th European Consensus, has confirmed its recommendation for the use of adjunct HBO in the management of selected patients with delayed healing (diabetic foot lesions; arterial ulcers; compromised skin grafts; and musculocutaneous flaps). However, there is still a need to perform good randomized controlled studies to improve the level of evidence supporting these recommendations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawrence WT. Clinical management of non healing wounds. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds). Wound healing. Biochemical and clinical aspects. Saunders, Philadelphia. 1992: 541–561.

    Google Scholar 

  2. Clark RAF. The molecular and cellular biology of wound repair. 2nd ed Plenum Press, New York, 1996.

    Google Scholar 

  3. Singer AS, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999; 341: 738–746.

    PubMed  CAS  Google Scholar 

  4. Hunt TK, Linsey M, Grislis G et al. The effect of ambient oxygen tension on wound infection. Ann Surg. 1975; 81: 35–39.

    Google Scholar 

  5. Rabkin JM, Hunt TK. Infection and oxygen. In: Davis JC, Hunt TK (eds). Problem wounds: The role of oxygen. Elsevier, New York. 1988: 1–16.

    Google Scholar 

  6. LaVan FB, Hunt TK. Oxygen and wound healing. Clin Plast Surg. 1990; 17(3): 463–472.

    PubMed  CAS  Google Scholar 

  7. Niinikoski H. Effect of oxygen supply on wound healing and formation of granulation tissue. Acta Physiol Scand (Suppl). 1969; 334: 1–72

    CAS  Google Scholar 

  8. Udenfried S. Formation of hydroxyproline in collagen. Science. 1966; 152: 1335–1340.

    Google Scholar 

  9. Kao K-Y, Hitt WE, Dawson RL, et al. Connective tissue. VIII. Factors affecting collagen synthesis by sponge biopsy connective tissue. Proc Soc Exper Biol (NY). 1963; 113: 762–766.

    CAS  Google Scholar 

  10. Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis: Effect of oxygen gradients and inspired oxygen concentration. Surgery. 1981; 90: 262–270.

    PubMed  CAS  Google Scholar 

  11. Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet. 1972; 135: 561–566.

    PubMed  CAS  Google Scholar 

  12. Stephens FO, Hunt TK. Effect of changes in inspired oxygen and carbon dioxide tensions on wound tensile strength: An experimental study. Ann Surg. 1971; 173: 515–519.

    PubMed  CAS  Google Scholar 

  13. Hohn DC, Hunt TK. Oxidative metabolism and microbicidal activity of rabbit phagocytes: Cells from wounds and from peripheral blood. Surg Forum. 1975; 26: 85–87.

    PubMed  CAS  Google Scholar 

  14. Knighton DR, Halliday B, Hunt TK. Oxygen as an antibiotic. The effect of inspired oxygen on infection. Arch Surg. 1984; 119: 199–204.

    PubMed  CAS  Google Scholar 

  15. Krogh A. The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919; 52: 409–415.

    CAS  Google Scholar 

  16. Hunt TK. A new method of determining tissue oxygen tension. Lancet. 1964; 2: 1370–1371.

    Google Scholar 

  17. Kivisaari J, Niinikoski J. Effects of hyperbaric oxygenation and prolonged hypoxia on the healing of open wounds. Acta Chir Scand. 1975; 141: 14–19.

    PubMed  CAS  Google Scholar 

  18. Niinikoski J, Hunt TK. Measurement of wound oxygen with implanted silastic tube. Surgery. 1972; 71: 22.

    Google Scholar 

  19. Roth RN, Weiss LD. Hyperbaric oxygen and wound healing. Clin Dermatol. 1994; 12: 141–156.

    PubMed  CAS  Google Scholar 

  20. Moon RE. Use of hyperbaric oxygen in the management of selected wounds. Adv Wound Care. 1998; 11: 332–334.

    PubMed  CAS  Google Scholar 

  21. Bakker DJ. Hyperbaric oxygen therapy and the diabetic foot. Diabetes Metab Res Rev. 2000; 16Suppl 1: S55–S58.

    PubMed  Google Scholar 

  22. Fulton JE Jr. The use of hyperbaric oxygen (HBO) to accelerate wound healing. Dermatol Surg. 2000; 26: 1170–1172.

    PubMed  Google Scholar 

  23. Mathieu D., Neviere R., Millien JP., Coget JM., Wattel F. Non invasive assessment of vasoconstrictive effects of hyperoxygenation in focal ischemia. In: Bennett PB., Marquis RE. Basic and applied high pressure biology University of Rochester Press, Rochester. 1994: 375–381.

    Google Scholar 

  24. Mathieu D, Coget JM, Vinckier L et al. Red blood cell deformability and hyperbaric oxygen. Med Sub Hyp 1984; 3:100.

    Google Scholar 

  25. Hunt TK., Niinikoski J., Zederfeldt BH, Silver A. Oxygen in wound healing enhancement: cellular effect of oxygen. In Davis JC., Hunt TK. (eds). Hyperbaric oxygen therapy. Undersea Medical Soc Inc, Bethesda MD. 1977; II: 111–122.

    Google Scholar 

  26. Stewart RJ, Yamaguchi KT, Mason SW et al. Tissue ATP levels in burn injured skin treated with hyperbaric oxygen. Undersea Biomed Res (suppl). 1989; 16: 53.

    Google Scholar 

  27. Thom SR. Molecular mechanisms for the antagonism of lipid peroxidation by hyperbaric oxygen. Undersea Biomed Res (suppl) 1990; 17: 53–54.

    Google Scholar 

  28. Mehm WS., Pimsler M., Becker RL., Lissner CR. Effect of oxygen on in vitro fibroblast cell proliferation and collagen biosynthesis. J Hyper Med. 1988; 3: 227–234.

    Google Scholar 

  29. Hehenberger K., Brismar K., Lind F., Kratz G. Dose-dependant hyperbaric oxygen stimulation of human fibroblast proliferation. Wound Repair Regen. 1997; 5: 147–150.

    Google Scholar 

  30. Roberts GP., Harding KG. Stimulation of glycosaminoglycan synthesis in cultured fibroblasts by hyperbaric oxygen. Br J Dermat. 1994; 131: 630–633.

    CAS  Google Scholar 

  31. Marx RE, Ehler WS., Tayapongsak P., Pierce LW. Relationship of oxygen dose to angiogenesis. Induction in irradiated tissue. Am J Surg. 1990; 160: 519–524.

    PubMed  CAS  Google Scholar 

  32. Meltzer T., Myers B. The effect of hyperbaric oxygen on the bursting strength and rate of vascularization of skin wounds in the rat. Am Surg. 1986; 52: 659–662.

    PubMed  CAS  Google Scholar 

  33. Nylander G, Nordström H, Eriksson E. Effects of hyperbaric oxygen on edema formation after a scald burn. Burns. 1984; 10(3): 193–196.

    CAS  Google Scholar 

  34. Dimitrijevich SD., Paranjape S., Wilson JR., Gracy RW., Mills JG. Effect of hyperbaric oxygen on human skin cells in culture and in human dermal and skin equivalents Wound Repair Regen 1999; 7: 53–64.

    PubMed  CAS  Google Scholar 

  35. Quirinia A., Viidik A. The effect of hyperbaric oxygen on different phases of healing of ischaemic flap wounds and incisional wounds in skin. Br J Plast Surg. 1995; 48: 583–589.

    PubMed  CAS  Google Scholar 

  36. Jain KK. Hyperbaric oxygen therapy in wound healing, plastic surgery and dermatology. In Jain KK. (ed), Textbook of hyperbaric medicine, Hogrefe and Huber, Seattle. 1999: 212–240.

    Google Scholar 

  37. Kidokoro M., Sakakibara K., Rakako T., Nimei M, Hibi Y et al. Experimental and clinical studies upon hyperbaric oxygen therapy for peripheral vascular disorders. In Wada J., Iwa T. (eds). Hyperbaric Medicine. Williams and Wilkins, Baltimore. 1969: 462–468.

    Google Scholar 

  38. Hart GB., Strauss MB. Responses of ischemic ulcerative conditions to OHB. In Smith G. (ed). Hyperbaric Medicine. Aberdeen University Press, Aberdeen. 1979: 312–314.

    Google Scholar 

  39. Perrins JD., Barr PO. Hyperbaric oxygenation and wound healing. In Schmutz J. (ed). Proceedings of the 1st Swiss symposium on HBO. Foundation for Hyperbaric Medicine, Basel. 1986: 119–132.

    Google Scholar 

  40. Wattel F, Mathieu D, Coget JM, Billard V. Hyperbaric oxygen therapy in chronic vascular wound management. Angiology. 1990; 42: 59–65.

    Google Scholar 

  41. Boulton AJM. The pathway to ulceration: aetiopathogenesis. In A. J. M. Boulton, H. Connor, P.R. Cavanagh. The foot in diabetes (2nd ed). Chichester, John Wiley and Sons. 1995: 37–48.

    Google Scholar 

  42. Reiber G. The epidemiology of diabetic foot problems. Diabetic Med 1996; 13: S6–S11.

    PubMed  Google Scholar 

  43. Most RS, Sinnock P. The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care. 1983; 6: 87–91.

    PubMed  CAS  Google Scholar 

  44. Ebskov B, Josephsen P. Incidence of reamputation and death after gangrene of the lower extremity. Prosthet Orthot Int. 1980; 4: 77–80.

    PubMed  CAS  Google Scholar 

  45. Van Houtum WH, Lavery LA, Harkless LB. The costs of diabetes-related lower extremity amputations in the Netherlands. Diabetic Med. 1995; 12: 777–781.

    PubMed  Google Scholar 

  46. Caputo GM, Cavanagh PR., Ulbrecht JS, Gibbons GW, Karchmer AW. Assessment and management of foot disease in patients with diabetes. N Engl J Med 1994; 331: 854–860.

    PubMed  CAS  Google Scholar 

  47. Pecoraro RE, Reiber GE, Burgess Em. Pathways to diabetic limb amputation: basis for prevention. Diabetes Care. 1990; 13: 513–521.

    PubMed  CAS  Google Scholar 

  48. Boulton AJ, Kubrusly DB, Bowker JH et al. Impaired vibratory perception and diabetic foot ulceration. Diabet Med. 1986; 3: 335–337.

    PubMed  CAS  Google Scholar 

  49. Sosenko JM, Kato M, Solo R, Bild DE. Comparison of quantitative sensory-threshold measures for their association with foot ulceration in diabetic patients. Diabetes Care 1990; 13: 1057–1061.

    PubMed  CAS  Google Scholar 

  50. Brand PW. Repetitive stress in the development of diabetic foot ulcers. In: Levin ME, O’Neal LW, eds. The diabetic foot. 4th ed. St Louis: C.V. Mosby, 1988: 83–90.

    Google Scholar 

  51. Pomposelli FR Jr, Jepsen SJ, Gibbons GW et al. Efficacy of the dorsal pedal bypass for limb salvage in diabetic patients: short-term observations. J Vasc Surg 1990; 11: 745–752.

    PubMed  Google Scholar 

  52. McNeely MJ, Boyko EJ, Ahroni JH, Stensel VL, Reiber GE, Smith DG et al. The independent contributors of diabetic neuropathy and vasculopathy in foot ulcerations. Diabetes Care, 1995; 18: 216–219.

    PubMed  CAS  Google Scholar 

  53. Carsten CG, Taylor SM, Langan EM, Crane MM. Factors associated with limb loss despite a patent infrainguinal bypass graft. Am Surg. 1998; 64: 33–37.

    PubMed  Google Scholar 

  54. Cianci P., Hunt TK. Adjunctive hyperbaric oxygen therapy in treatment of diabetic foot wounds. In: Levin ME., O’Neal LW., Bowker JH. (eds). The diabetic foot 5th ed. Mosby-year book, Saint-Louis. 1993: 305–319.

    Google Scholar 

  55. Brakora MJ, Sheffield PJ. Hyperbaric oxygen therapy for diabetic wounds. Clin Pod Med Surg. 1995; 12: 105–117.

    CAS  Google Scholar 

  56. Williams RL. Hyperbaric oxygen therapy and the diabetic foot. J Am Pod Med Ass. 1997; 87: 279–292.

    CAS  Google Scholar 

  57. Sheffield PJ. Tissue oxygen measurements with respect to soft tissue wound healing with normobaric and hyperbaric oxygen. Hyperbaric Oxygen. 1985; 6: 18–46.

    Google Scholar 

  58. Sheffield PJ. Tissue Oxygen measurements. In: Davis JC, Hunt TK (eds). Problem wound, the role of oxygen. Elsevier, Amsterdam. 1988; 17–51.

    Google Scholar 

  59. Wattel F, Mathieu D, Fossati P et al. Hyperbaric oxygen in the treatment of diabetic foot lesions. J Hyp Med. 1991; 6: 263–268.

    Google Scholar 

  60. Hart GB, Strauss MD. Response of ischemic ulcerative conditions to OHB. In Smith G (ed). Proceedings of the Sixth International Congress on Hyperbaric Medicine. Aberdeen University Press. 1979: 312–314.

    Google Scholar 

  61. Doctor N, Pandya S, Supe A. Hyperbaric oxygen therapy in diabetic foot. J Postgrad Med 1992; 38: 112–114.

    PubMed  CAS  Google Scholar 

  62. Zamboni Wa, Wong HP, Stephenson LL et al. Evaluation of hyperbaric oxygen for diabetic wounds: a prospective study. Undersea and Hyperb Med. 1997; 24: 175–179.

    CAS  Google Scholar 

  63. Faglia E, Favales F, Aldeghi A et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcers. A randomized study. Diabetes Care 1996; 19: 1338–1343.

    PubMed  CAS  Google Scholar 

  64. Fourth Consensus Conference of the European Committee on Hyperbaric Medicine. London. December 4–5, 1998. Hyperbaric oxygen in the management of foot lesions in diabetic patients. Diabetes Nutr Metab. 1999; 12: 47–48.

    Google Scholar 

  65. Slack WK., Thomas DA., Dejode LRJ. Hyperbaric oxygen in treatment of trauma, ischemic disease of limbs and varicose ulcerations. In Brown IW., Cox B. (eds). Proceedings of the 3 rd international congress on hyperbaric medicine. National Academy of Sciences — National Research Council, Washington D.C. 1966: 621–624.

    Google Scholar 

  66. Bass BH. The treatment of varicose leg ulcers by hyperbaric oxygen. Postgrad Med J. 1970; 46: 407–408.

    PubMed  CAS  Google Scholar 

  67. Fischer BH. Treatment of ulcers on the legs with hyperbaric oxygen. J Dermatol Surg. 1975; 1: 55–58.

    PubMed  CAS  Google Scholar 

  68. Hammerlund C., Sundberg T. Hyperbaric oxygen reduced size of chronic leg ulcers: a randomized double-blind study. Plast Reconstr Surg. 1994; 93: 829–833.

    Google Scholar 

  69. Eltorai I. Hyperbaric oxygen in the management of pressure sores in patients with injuries to the spinal cord. J Dermatol Surg Oncol. 1981; 7: 737–740.

    PubMed  CAS  Google Scholar 

  70. Steinberg MH. Pathophysiology of sickle cell disease. Baillieres Clin Haematol. 1998; 11: 163–184.

    PubMed  CAS  Google Scholar 

  71. Ballas SK. Sickle cell disease: clinical management. Baillieres Clin Haematol. 1998; 11: 185–214.

    PubMed  CAS  Google Scholar 

  72. Laszlo J., Obenour W. Jr., Saltzman HA. Effects of hyperbaric oxygenation on sickle syndromes. South Med J. 1969; 62: 453–456.

    PubMed  CAS  Google Scholar 

  73. Mehdaoui H., Elisabeth L. Sickle-cell anemia. In: Oriani G., Marroni A., Wattel F. Handbook on hyperbaric medicine. Springer, Berlin. 1996: 830–833.

    Google Scholar 

  74. Wiseman DM., Rovee DT., Alvarez OM. Wound dressings: design and use. In: Cohen IK., Diegelman RF., Lindblad WS. (eds). Wound healing: biochemical and clinical aspects. Saunders, Philadelphia. 1992: 562–580.

    Google Scholar 

  75. Mathieu D., Neviere R., Wattel F. Transcutaneous oxymetry in hyperbaric medicine. In: Oriani G., Marroni A., Wattel F. (eds). Handbook of hyperbaric medicine. Springer, Berlin. 1996: 686–698.

    Google Scholar 

  76. Baumberger JP, Godfriend RB. Determination of arterial oxygen tension in man by equilibration trough intact skin. Fed Proc. 1951; 10: 10–11.

    Google Scholar 

  77. Clark LC Jr, Wolf R, Granger D. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953; 6: 189–193.

    PubMed  CAS  Google Scholar 

  78. Clark LC Jr. Monitor and control of blood and tissue oxygen tension. Trans Am Soc Artif Intern Org. 1956; 2: 41–46.

    Google Scholar 

  79. Huch R, Lubbers DW, Huch A. Quantitative continuous measurement of partial oxygen pressure on the skin of adults and newborn babies. Pflugers Arch. 1972; 337: 185–198.

    PubMed  CAS  Google Scholar 

  80. Huch A, Huch R, Hollmann G, Hockerts T. Transcutaneous PO2 of volunteers during hyperbaric oxygenation. Biotelemetry. 1977; 4: 88–l00.

    PubMed  CAS  Google Scholar 

  81. Eberhard P, Mindt W, Jahn F, Hammacher K. Oxygen monitoring of newborns by skin electrodes. Correlation between arterial and cutaneously determined PO2. In: Bruley DF, Bicher HI (eds). Advances in experimental medicine and biology. Plenum Press, New York. 1973; 37B: 1097–1101.

    Google Scholar 

  82. Eberhard P, Mindt W, Jann F, Hammacher K. Continuous PO2 monitoring in the neonate by skin electrodes. Med Biol Eng. 1975; 13: 436–442.

    PubMed  CAS  Google Scholar 

  83. Hohenauer L. Transcutaneous monitoring Of PO2 (TcPO2) in sick newborn babies: three years of clinical experience. In: Huch A, Huch R, Lucey JF (eds). Continuous transcutaneous blood gas monitoring. New York, Alan R. Liss. 1979: pp 375–376.

    Google Scholar 

  84. Montgomery H, Horowitz O. Oxygen tension of tissues by polarographic method. J Clin Invest. 1953; 29: 1120–1130.

    Google Scholar 

  85. Shoemaker WC, Vidyssagar D. Physiological and clinical significance of PTCO2 measurements. Crit Care Med, 9: 689–690.

    Google Scholar 

  86. Brantigan JW, Ziegler EC, Hynes KM, Dunn KL, Albo D. Tissue gases during hypovolemic shock. J Appl Physiol. 1974; 31: 117–122.

    Google Scholar 

  87. Dennhardt R, Ricke MF, Huch A, Huch R. Transcutaneous PO2 monitoring in anaesthesia. Eur J Intens Care Med. 1976; 2: 29–33.

    CAS  Google Scholar 

  88. Podolsky S, Baraff LJ, Geeher E. Transcutaneous oximetry measurements during acute blood loss. Ann Emerg Med. 1982; 11: 523–525.

    PubMed  CAS  Google Scholar 

  89. Kram HB, Shoemaker WC. Diagnosis of major peripheral arterial trauma by transcutaneous oxygen monitoring. Am J Surg. 1984; 147: 776–780.

    PubMed  CAS  Google Scholar 

  90. Eickhoff JH, Engell HC. Transcutaneous oxygen tension measurement on the foot in normal subjects and in patients with peripheral arterial disease admitted for vascular surgery. Scand J Clin Lab Invest. 1981; 41: 742–748.

    Google Scholar 

  91. Ratlift DA, Clyne CAC, Chant ADB, Webster JHH. Prediction of amputation wound healing: the role of transcutaneous PO2 assessment. Br J Surg. 1984; 71: 219–222.

    Google Scholar 

  92. White RA, Nolan L, Harley D, Shoemaker WC. Noninvasive evaluation of peripheral vascular disease using transcutaneous oxygen tension. Am J Surg. 1982; 144: 68–75.

    PubMed  CAS  Google Scholar 

  93. Wyss CA, Matsen FA III, Simmons CW, Burgess EM. Transcutaneous oxygen tension measurements on limbs of diabetic and nondiabetic patients with peripheral vascular disease. Surgery. 1984; 95(3): 339–345.

    PubMed  CAS  Google Scholar 

  94. Achauer BM, Black KS, Litke DK. Transcutaneous PO2 in flaps: a new method of survival prediction. Plast Reconstr Surg. 1980; 65: 738–745.

    PubMed  CAS  Google Scholar 

  95. Serafin D, Lesence CB, Mullen RY, Georgiade NG. Transcutaneous PO2 monitoring for assessing viability and predicting survival of skin flaps: experimental and clinical correlations. J Microsurg. 1981; 2: 165–178.

    PubMed  CAS  Google Scholar 

  96. Sheffield PJ, Workman WT. Noninvasive tissue oxygen measurements in patients administered normobaric and hyperbaric oxygen by mask. Hyperb Oxygen. 1985; 6: 47–62.

    Google Scholar 

  97. Abbot NC, Swanson Beck J, Carnochan FM, Spence VA, James PB. Estimating skin respiration from transcutaneous PO2/PCO2 at 1 and 2 atm abs on normal and inflamed skin. J Hyperb Med. 1990; 5: 91–102.

    Google Scholar 

  98. Wattel F., Mathieu D., Neviere R. Transcutaneous oxygen pressure measurements. A useful technique to appreciate the oxygen delivery to tissues. J Hyperbaric Med. 1991; 6: 269–281.

    Google Scholar 

  99. Hart GB, Meyer GW, Strauss MB, Messina VJ. Transcutaneous partial pressure of oxygen measured in a monoplace hyperbaric chamber at 1.15 and 2 atm abs oxygen. J Hyperb Med. 1990; 5: 223–229.

    Google Scholar 

  100. Dowd GSE, Linge K, Bentley G. Measurement of transcutaneous oxygen pressure in normal and ischaemic skin. J Bone Joint Surg. 1983; 65: 79–83.

    CAS  Google Scholar 

  101. Evans NTS, Naylor PFD. The systemic oxygen supply to the surface of the human skin. Respir Physiol. 1967; 3: 21–37.

    PubMed  CAS  Google Scholar 

  102. Hauser CJ, Shoemaker WC. Use of a transcutaneous PO2 regional perfusion index to quantify tissue perfusion in peripheral vascular disease. Ann Surg. 1983; 197: 337–343.

    PubMed  CAS  Google Scholar 

  103. Wattel F, Mathieu D, Fossati F, Neviere R, Coget JM. Hyperbaric oxygen in the treatment of diabetic foot. Undersea Biomed Res. 1990; 17(Suppl): 160–161.

    Google Scholar 

  104. Mathieu D, Neviere R, Pellerin P, Patenotre P, Wattel F. Pedicle skin flap. prediction of outcome by transcutaneous oxygen measurements in hyperbaric oxygen. Plast Reconstr Surg. 1993; 91: 329–334.

    PubMed  CAS  Google Scholar 

  105. European Committee for Hyperbaric Medicine. Recommendation of the 7th European Consensus Conference on Hyperbaric Medicine. European J. Underwater Hyp Med 2005, 6: 29–40.

    Google Scholar 

  106. European Committee for Hyperbaric Medicine. Recommendation of the first European Consensus Conference on Hyperbaric Medicine In Marroni A., Mathieu D., Wattel F (eds). The ECHM collection, volume 1, Best publishing company, Flagstaff, 2005, I133–I142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Mathieu, D., Linke, JC., Wattel, F. (2006). Non-Healing Wounds. In: Mathieu, D. (eds) Handbook on Hyperbaric Medicine. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4448-8_20

Download citation

Publish with us

Policies and ethics