Skip to main content

Crush Injury and Other Acute Traumatic Ischemia

  • Chapter

Abstract

Crush injury and other acute traumatic ischemia are characterized by a vicious circle of ischemia, hypoxia, oedema, disturbed microcirculation, and secondary ischemia in the border area of the tissue affected by the primary trauma. In hypoxic tissues mechanisms of infection control and healing are impaired so that the risk of infection and wound healing problems are definitely higher than after other kinds of injuries. Restoration of perfusion can lead to reperfusion injury. Hyperbaric oxygen ameliorates the effects of acute traumatic ischemia through four mechanisms: hyperoxygenation, vasoconstriction, influence on reperfusion and host factors. Besides adequate shock management, direct surgical intervention with debridement and repair of soft tissues and of any damaged vessels and stabilization of bony elements are of paramount importance. Adjuvant hyperbaric oxygen therapy (HBOT) should be administered as soon as possible; when it is given early it can prevent large expanses of ischemic necrosis, minimize the frequency and extent of amputations, reduce oedema, control infection, support healing, and prevent reperfusion injury. However, an early start of HBOT and an uncompromising application without restrictions to established surgical treatment and intensive care therapy is essential

Keywords

  • Hyperbaric oxygen
  • Crush injury
  • Traumatic ischemia
  • Wound healing
  • Oedema

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camporesi EM. Crush injury, compartment syndrome, and other acute traumatic ischemias. In: Camporesi EM (ed) Hyperbaric oxygen therapy: a committee report. Undersea and Hyperbaric Medical Society (UHMS), Kensington, MD. 1996: pp 15–18.

    Google Scholar 

  2. Matsen, FA, Mayo KA, Krugmire, RB et al. A model compartmental syndrome in man with particular reference to the quantification of nerve function. J. Bone and Joint Surg., 1977; 59-A: 648–653.

    Google Scholar 

  3. Tscherne, H., and Gotzen, L.: Fractures with Soft Tissue Injuries. New York, Springer, 1984.

    Google Scholar 

  4. McQueen MM, Gaston P, Court-Brown CM. Acute compartment syndrome: who’s at risk? J Bone Joint Surg [Br] 2000; 82-B:200–203.

    CrossRef  Google Scholar 

  5. Strauss M.B.: Introduction to non healing wounds. Current concepts in Wound Care. Fall, 1986; 5–6.

    Google Scholar 

  6. Niinikowski J, Hunt TK, Zederfeldt BH. Oxygen supply in healing tissue. Am. J. Surg 1972; 123, 247–252.

    CrossRef  Google Scholar 

  7. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 1984

    Google Scholar 

  8. Oriani G. (Ed.): The role of HBOT in acute musculo-sceletal trauma, Recommendations of the jury of the 3rd Consensus Conference of the ECHM, Milano September 96, Pressure, 1997,26,8.

    Google Scholar 

  9. Strauss M. B., Hart G.B.: Hyperbaric oxygen and the sceletal muscle compartment syndrome, Contemp. Orthop., 1989; 18, 167–174.

    Google Scholar 

  10. Strauss MB, Hart GB. Hyperbaric oxygen and the sceletal muscle compartment syndrome, Contemp. Orthop., 1989; 18, 167–174.

    Google Scholar 

  11. Johansen K, Daines M, Howey T et al. Objective criteria accurately predict amputation following lower extremity trauma. J trauma 1990; 30:568–573.

    PubMed  CAS  Google Scholar 

  12. Park MK, Muhwich KH, Myers RAM. Hyperoxia prolongs the aminoglycoside induced postantibiotic effect in pseudomonas aeroginosa. Antimicrob Agents Chemother 1991;35:691–695.

    PubMed  CAS  Google Scholar 

  13. Nylander G, Lewis D, Nordstrom H et al. Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg 1984; 76: 596–603.

    Google Scholar 

  14. Nylander G, Nordstrom H, Lewis D et al. Metabolic effects of hyperbaric oxygen in postischemic muscle. Plast Reconstr Surg 1987; 79: 91–97.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Haapiniemi T, Nylander G, Sirsjö A et al. Hyperbaric oxygen reduces ischemia-induced skeletal muscle injury. Plast Reconstr Surg 1996; 97:602–609.

    Google Scholar 

  16. Bird AD, Telfer AB. Effect of hyperbaric oxygen on limb circulation. Lancet 1965; 1:355–356.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Sullivan SM, Johnson PC. Effect of oxygen on blood flow autoregulation in cat sartorius muscle. Am J Physiol 1981; 241:807–815.

    Google Scholar 

  18. Nylander G, Lewis D, Nordstrom H et al. Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg 1984; 76: 596–603.

    Google Scholar 

  19. Krogh A, The number of distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 1919; 52:409–415.

    CAS  PubMed  Google Scholar 

  20. Boerema I, Meijne NG, Brummelkamp WH, et al. (1959) Life without blood. Arch Chir Neer 11: 70–83.

    Google Scholar 

  21. Boerema I, Meijne NG, Brummelkamp WK et al. Life without blood: a study of the influence of high atmospheric pressure and hypothermia on dilution of the blood. J Cardiovasc Surg 1960; 1: 133–146.

    Google Scholar 

  22. Nylander G, Lewis D, Nordstrom H et al. Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg 1984; 76: 596–603.

    Google Scholar 

  23. Thom SR, Elbuken ME. Oxygen-dependent antagonism of lipid peroxidation. Free Radio Biol Med 1991; 10:413–426.

    CrossRef  CAS  Google Scholar 

  24. Thom SR, Functional inhibition of Leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol 1993; 123:248–256.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Zamboni WA, Roth AC, Russell RC, et al. Morphological analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg 1993; 91:1110–1123.

    PubMed  CAS  Google Scholar 

  26. Lindstrom T, Gullichsen E, Lertola K, Niinikowski J. Effects of hyperbaric oxygen therapy on perfusion parameters and transcutaneous oxygen measurements in patients with intramedularry nailed tibial shaft fractures. Undesea Hyper Med 1998; 25(2):87–91.

    CAS  Google Scholar 

  27. Bouachour G, Cronier P, Gouello JP et al. (1996) Hyperbaric oxygen therapy in the management of crush injuries: a randomized double-blind placebo-controlled clinical trial. J Trauma 41: 333–339.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Strauss MB (1981) Role of hyperbaric oxygen therapy in acute ischemias and crush injuries-an orthopedic perspective. HBO Rev 2: 87–106.

    Google Scholar 

  29. Shupak A, Gozal D, Ariel A et al. (1987) Hyperbaric oxygenation in acute peripheral posttraumatic ischemia. J Hyperbar Med 2: 7–14.

    Google Scholar 

  30. Radonic V, Baric D, Petricevic A, et al. Military injuries to the popliteal vessels in Croatia. J Cardiovasc Surg 1994; 35, 27–32.

    CAS  Google Scholar 

  31. Matos LA, Hutson JJ, Bonet H, Lopez EA. HBO as an adjunct for limb salvage in crush injuries of the extremeties. Undersea and Hyperbaric Med 1999; 20(Suppl): 60–61.

    Google Scholar 

  32. Schoeppenthau H, Endermann K, Kemmer A. Hyperbaric oxygen therapy in crush injuries: Experiences of the HBOT-and Trauma Center Murnau, Germany. EJUHM 2004; 4: 98–100.

    Google Scholar 

  33. Millar I, (2005) Hyperbaric Oxygen in Lower Limb Trauma (HOLLT) Study protocol. Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kemmer, A. (2006). Crush Injury and Other Acute Traumatic Ischemia. In: Mathieu, D. (eds) Handbook on Hyperbaric Medicine. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4448-8_17

Download citation