Advertisement

THE ALLELOPATHIC POTENTIAL OF GINSENOSIDES

Chapter
Part of the Disease Management of Fruits and Vegetables book series (DMFV, volume 2)

Abstract

American ginseng (Panax quinquefolius L.) is a perennial herb valued for the medicinal properties of its large, fleshy tap root. These medicinal properties are purported to be due to the triterpenoid saponins, or ginsenosides, that accumulate to 3–6% of the root dry weight. We asked the question: what is the ecological role of ginsenosides in Panax species? In addressing this question, we have determined that ginsenosides, like other saponins, possess fungitoxic properties, although different fungi and oomycotan organisms appear to be differentially affected by them in vitro. In order to play an allelopathic role, however, ginsenosides must be present in the soil at biologically active (i.e., ecologically relevant) concentrations. Results to date support the hypothesis that ginsenosides are phytoanticipins and serve as host resistance factors. The success of certain pathogens (e.g., Pythium cactorum, Pythium irregulare, Cylindrocarpon destructans) on ginseng may arise from their ability to detoxify or otherwise utilize ginsenosides as a nutritive source or growth stimulating factor, while other soil borne organisms appear susceptible to their fungitoxic properties. Ginsenosides have been isolated from rhizosphere soil and root exudates suggesting that these compounds are involved in allelopathic interactions between the host plant and soil fungi. Ultimately this allelopathic interaction may influence the fungal diseases of ginseng.

Keywords

American Ginseng Ginseng Root Triterpenoid Saponin ALLELOPATHIC Potential Ginseng Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, R.C., Fralish, J.S., Armstrong, J.E., Benjamin, P.K. The ecology and biology of Panax quinquefolium L. (Araliaceae) in Illinois. Am Midl Nat 1993; 129:357–372. CrossRefGoogle Scholar
  2. Armah, C.N., Mackie, A.R., Roy, C., Price, K., Osbourn, A.E., Bowyer, P., Ladha, S. The membranepermeabilizingeffect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 1999;76:281–290. PubMedGoogle Scholar
  3. Arneson, P.A., Durbin, R.D. The sensitivity of fungi to α-tomatine. Phytopathology 1968; 58:536–537 Google Scholar
  4. Assa, Y., Gestetner, B., Chet, I., Henis, Y. Fungistatic activity of lucerne saponins and digitonin as related to sterols. Life Sci 1972; 11:637–647. CrossRefGoogle Scholar
  5. Azad, H.R., Davis, J.R., Schnathorst, W.C., Kado, C.I. Influence of Verticillium wilt resistant and susceptible potato genotypes on populations of antagonistic rhizosphere and rhizoplane bacteria and free nitrogen fixers. Appl Microbiol Biotechnol 1987; 26:99–104. CrossRefGoogle Scholar
  6. Bécard, G., Douds, D.D., Pfeffer, P.E. Extensive in vitro hyphal growth of VAM fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 1992; 58:821–825. PubMedGoogle Scholar
  7. Black, R.L.B., Dix, N.J. Utilization of ferulic acid by microfungi from litter and soil. Trans Br Mycol Soc 1976;66:313–317. CrossRefGoogle Scholar
  8. Bouarab, K., Melton, R., Peart, J., Baulcombe, D., Osbourn, A. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 2002; 418:889–892. PubMedCrossRefGoogle Scholar
  9. Bowen, G.D., Rovira, A.D. The rhizosphere. In, Plant Roots, the Hidden Half. Waisel, Y., Eshel, A., Kafkafi, U., eds. New York: Marcel Dekker Inc. 1991; pp. 641–670. Google Scholar
  10. Bowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J., Osbourn, A.E. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 1995; 267:371–374. PubMedGoogle Scholar
  11. Brammall, R.A. Alternaria blight. In Diseases and Pests of Vegetable Crops in Canada. Howard, R.J, Garland, J.A., Seaman, W.L. ed., The Canadian Phytopathological Society and the Entomological Society of Canada, Ottawa, ON. 1994a; pp. 294–295. Google Scholar
  12. Brammall, R.A. Disappearing root rot. In, Diseases and Pests of Vegetable Crops in Canada. Howard, R.J., Garland, J.A., Seaman, W.L., ed., The Canadian Phytopathological Society and the Entomological Society of Canada, Ottawa, ON. 1994b; pp. 296–297. Google Scholar
  13. Braun, P.G. The combination of Cylindrocarpon lucidum and Pythium irregulare as a possible cause of apple replant disease in Nova Scotia. Can J Plant Pathol 1991; 13:291–297. CrossRefGoogle Scholar
  14. Braun, P.G. Effects of Cylindrocarpon and Pythium species on apple seedlings and potential role in apple replant disease. Can J Plant Pathol 1995; 17:336–341. CrossRefGoogle Scholar
  15. Brunner, F., Wirtz, W., Rose, J.K.C., Darvill, A.G., Govers, F., Scheel, D., Nuernberger, T. A beta-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry 2002; 59:689–696. PubMedCrossRefGoogle Scholar
  16. Burkhardt, H.J., Maizel, J.V., Mitchell, H.K. Avenacin, an antimicrobial substance isolated from Avena sativa. II. Structure. Biochemistry 1964; 3:426–431. Google Scholar
  17. Campbell, C.D., Grayston, S.J., Hirst, D.J. Use of rhizosphere carbon sources in sole carbon utilisation tests to discriminate soil microbial communities. J Microbiol Methods 1997; 30:33–41 CrossRefGoogle Scholar
  18. Capasso, R., Cristinzio, G., Di Maro, A., Ferranti, P., Parente, A. Syringicin, a new alpha-elicitin from an isolate of Phytophthora syringae, pathogenic to citrus fruit. Phytochemistry 2001; 58:257–262. PubMedCrossRefGoogle Scholar
  19. Catling, P.M., Spicer, K.W. Pollen vectors in an American ginseng crop. Econ Bot, 1995; 49:99–102. Google Scholar
  20. Chao, W.L., Nelson, E.B., Harman, G.E., Hoch, H.C. Colonization of the rhizosphere by biological control agents applied to seeds. Phytopathology 1986; 76:60–65. Google Scholar
  21. Chen, S.E., Staba, E.J. American ginseng I. Large scale isolation of ginsenosides from leaves and stems. Lloydia1978; 41:361–366. Google Scholar
  22. Court, W.A., Reynolds, L.B., Hendel, J.G. Influence of root age on the concentration of ginsenosides of Americanginseng (Panax quinquefolium). Can J Plant Sci 1996; 76:853–855. Google Scholar
  23. D’Arcy Lameta, A., Jay, M. Study of soybean and lentil root exudates: 3. Influence of soybean isoflavonoids onthe growth of rhizobia and some rhizosphere microorganisms. Plant Soil 1987; 101:269–272. Google Scholar
  24. Dewick, P.M. Medicinal natural products: A biosynthetic approach. Chichester: John Wiley and Sons, 1997. Google Scholar
  25. Escalante, A.M., Santecchia, C.B., López, S.N., Gattuso, M.A., Ravelo, A.G., Monache, F.D., Sierra, M.G., Zacchino, S.A. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharm 2002; 82:29–34. CrossRefGoogle Scholar
  26. Evans, J.L., Gealt, M.A. The sterols of growth and stationary phases of Aspergillus nidulans cultures. J Gen Microbiol 1985; 131:279–284. Google Scholar
  27. Favel, A., Steinmetz, M.D., Regli, P., Vidal-Olivier, E., Elias, R., Balansard, G. In vitro antifungal activity of triterpenoid saponins. Planta Med 1994; 60:50–53. PubMedGoogle Scholar
  28. Ford, J.E., McChance, D.J., Drysdale, R.B. The detoxification of α-tomatine by Fusarium oxysporum f. sp. lycopersici. Phytochemistry 1977; 16:544–546. Google Scholar
  29. Fountain, M.S. Vegetation associated with natural populations of ginseng Panax quinquefolium in Arkansas USA. Castanea 1986; 51:42–48. Google Scholar
  30. Fuzzati, N., Gabetta, B., Jayakar, K., Pace, R. Peterlongo, F. Liquid chromatography-electrospray mass spectrometric identification of ginsenosides in Panax ginseng roots. J Chromatography A, 1999; 854:69–79. CrossRefGoogle Scholar
  31. Grayer, R.J., Harborne, J.B. A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry1994; 37:19–42. CrossRefGoogle Scholar
  32. Grayston, S.J., Griffith, G.S., Mawdsley, J.L., Campbell, C.D., Bardgett, R.D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 2001; 33:533–551. CrossRefGoogle Scholar
  33. Green, H. Heiberg, N., Lejbolle, K., Jensen, D.F. The use of a GUS transformant of Trichoderma harzianum, strain T3a, to study metabolic activity in the spermosphere and rhizosphere related to biocontrol of Pythium damping-off and root rot. Eur J Plant Pathol 2001; 107:349–359. CrossRefGoogle Scholar
  34. Griffiths, K.M., Bacic, A., Howlett, B.J. Sterol composition of mycelia of the plant pathogenic ascomycete Leptosphaeria maculans. Phytochemistry 2003; 62:147–153. PubMedCrossRefGoogle Scholar
  35. Haralampidis, K., Trojanowska, M., Osbourn, A.E. Biosynthesis of triterpenoid saponins in plants. In Advances in Biochemical Engineering/Biotechnology. Scheper Th. ed., Berlin: Springer-Verlag, 2002; pp.31–49. Google Scholar
  36. Hartung, A.C., Stephens, C.T. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to Fusarium crown rot. J Chem Ecol 1983; 9:1163–1174. CrossRefGoogle Scholar
  37. Helal, H.M., Sauerbeck, D.R. Influence of plant roots on C and P metabolism in soil. Plant Soil 1984; 76:175–182. CrossRefGoogle Scholar
  38. Henderson, M.E.K., Farmer, V.C. Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. J Gen Microbiol 1955; 12:37–46. PubMedGoogle Scholar
  39. Hong, S.C., Gray, A.B., Asiedu, S.K., Ju, H.Y. The evaluation of Trichoderma isolates, benomyl, and propiconazole against Cylindrocarpon destructans. Can J Plant Sci 2000; 80:231. Google Scholar
  40. Isutsa, D.K., Merwin, I.A. Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. Hortscience 2000; 35:262–268. Google Scholar
  41. Johnson, N.C., Tillman, D., Wedin, D. Plant and soil controls on mycorrhizal fungal communities. Ecology 1992; 73:2034–2042. CrossRefGoogle Scholar
  42. Jung, J.D., Park, H.W., Hahn, Y., Hur, C.G., In, D.S., Chung, H.J., Liu, J.R., Choi, D.W. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports 2003; 22:224–230. PubMedCrossRefGoogle Scholar
  43. Keukens, E.A.J., De Vrije, T., Fabrie, C.H.J.P., Demel, R.A., Jongen, W.M.F., De Kruijff, B. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1992; 1110:127–136. PubMedGoogle Scholar
  44. Keukens, E.A.J., De Vrije, T., Van Den Boom, C., De Waard, P., Plasman, H.H., Thiel, F., Chupin, V., Jongen, W.M.F., De Kruijff, B. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995; 1240:216–228. Google Scholar
  45. Kushiro, T., Shibuya, M. Ebizuka, Y. beta-Amyrin synthase: Cloning of oxidosqualene cyclase that catalyzesthe formation of the most popular triterpene among higher plants. Eur J Biochem 1998; 256:238–244. PubMedCrossRefGoogle Scholar
  46. Lagrange, H., Jay-Allemand, C., Lapeyrie, F. Rutin, the phenolglycoside from Eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 2001; 150:349–355. CrossRefGoogle Scholar
  47. Larkin, R.P., Hopkins, D.L., Martin, F.N. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 1993; 83:1097–1105. Google Scholar
  48. Latijnhouwers, M., de Wit, P.J.G.M., Govers, F. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol, 2003; 11:462–469. CrossRefGoogle Scholar
  49. Lawrence, G.H.M. Taxonomy of Vascular Plants. Macmillan Press, New York, 1951. Google Scholar
  50. Levy, M., Zehavi, U., Naim, M., Itzhack, P. An improved procedure for the isolation of medicagenic acid 3-Oß-D-glucopyranoside from alfalfa roots and its antifungal activity on plant pathogens. J Agric Food Chem 1986; 34:960–963. CrossRefGoogle Scholar
  51. Levy, M., Zehavi, U., Naim, M., Polacheck, I. Isolation, structure determination, synthesis, and anti-fungal activity of a new native alfalfa-root saponin. Carbohydr Res 1989; 193:115–123. CrossRefGoogle Scholar
  52. Lewis, W.H., Zenger, V.E. Population dynamics of the American ginseng Panax quinquefolium (Araliaceae). Am J Bot 1982; 69:1483–1490. CrossRefGoogle Scholar
  53. Li, T.S.C., Mazza, G., Cottrell, A.C., Gao, L. Ginsenosides in roots and leaves of American ginseng. J Agric Food Chem 1996; 44:717–720. CrossRefGoogle Scholar
  54. Maizel, J.V., Burkhardt, H.J., Mitchell, H.K. Avenacin, an antimicrobial substance isolated from Avena sativa. I. Isolation and antimicrobial activity. Biochemistry 1964; 3:424–426. Google Scholar
  55. Marston, A., Gafner, F., Dossaji, S.F., Hostettmann, K. Fungicidal and molluscicidal saponins from Dolichos kilimandscharicus. Phytochemistry 1988; 27:1325–1326. CrossRefGoogle Scholar
  56. Mazzola, M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 1998; 88:930–938. PubMedGoogle Scholar
  57. Mazzola, M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 1999 89:920–927. PubMedGoogle Scholar
  58. Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology 2000;40:43–56. PubMedGoogle Scholar
  59. Mikes, V., Milat, M.L., Ponchet, M., Ricci, P., Blein, J.P. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett 1997; 416:190–192. PubMedCrossRefGoogle Scholar
  60. Miller, H.J., Henken, G., van Veen, J.A. Variation and composition of bacterial populations in the rhizosphere of maize, wheat and grass cultivars. Can J Microbiol 1989; 35:656–660. CrossRefGoogle Scholar
  61. Morrissey, J.P., Osbourn, A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol Biol Rev 1999; 63:708–724. PubMedGoogle Scholar
  62. Narasimhan, K., Basheer, C., Bajic, V.B., Swarup, S. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 2003; 132:146–153. PubMedCrossRefGoogle Scholar
  63. Nes, D.W. Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes. In Ecology and Metabolism of Plant Lipids. Fuller, G., Nes, W.D. ed., American Chemical Society, Washington, DC. 1987; pp. 304–328. Google Scholar
  64. Nicol, R.W., Yousef, L., Traquair, J.A., Bernards, M.A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 2003; 64:257–264. PubMedCrossRefGoogle Scholar
  65. Nicol, R.W., Traquair, J.A., Bernards, M.A. Ginsenosides as host resistance factors in American Ginseng (Panax quinquefolius). Can J Bot 2002; 80:557–562. CrossRefGoogle Scholar
  66. Ohtani, K., Mavi, S., Hostettmann, K. Molluscicidal and antifungal triterpenoid saponins from Rapanea melanophloeos leaves. Phytochemistry 1993; 33:83–86. CrossRefGoogle Scholar
  67. Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 1. effect on growth, endogenous respiration and leakage of UV-absorbing material from various fungi. Physiol Plant 1971; 24:534–543. Google Scholar
  68. Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 5. Role of sterol contents of some fungi. Physiol Plant 1973a; 28:507–515. CrossRefGoogle Scholar
  69. Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 6. The effect of aescin on fungi with reduced sterol contents. Physiol Plant 1973b; 29:145–149. CrossRefGoogle Scholar
  70. OMAF. Ontario ginseng exports, 1996–2002. Queen’s Printer for Ontario, 2003. Google Scholar
  71. Osbourn, A.E., Wubben, J.P., Daniels, M.J. Saponin detoxification by phytopathogenic fungi. In Plant-Microbe Interactions Volume 2. Stacey, G., Keen, N.T. ed., New York: Chapman and Hall, 1995a, pp. 99–124. Google Scholar
  72. Osbourn, A. Bowyer, P., Lunness, P., Clarke, B., Daniels, M. Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins. Mol Plant Microb Interact 1995b; 8:971–978. Google Scholar
  73. Osbourn, A.E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 1996;8:1821–1831. PubMedCrossRefGoogle Scholar
  74. Osbourn, A.E. Saponins in cereals. Phytochemistry 2003; 62:1–4. PubMedCrossRefGoogle Scholar
  75. Ouf, S.A., Hady, F.K., Abdel, E.M.H., Shaker, K.H. Isolation of antifungal compounds from some Zygophyllum species and their bioassay against two soil-borne plant pathogens. Folia Microbiol 1994; 39:215–221. Google Scholar
  76. Panabières, F., Ponchet, M., Allasia, V., Cardin, L., Ricci, P. Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol Res 1997;101:1459–1468. CrossRefGoogle Scholar
  77. Papadopoulou, K., Melton, R.E., Leggett, M. Daniels, M.J., Osbourn, A.E. Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 1999; 96:12923–12928. PubMedCrossRefGoogle Scholar
  78. Papavizas, G.C. Survival of Trichoderma harzianum in soil and in pea and bean rhizosphere. Phytopathology 1982; 71:121–125. CrossRefGoogle Scholar
  79. Pedersen, C.T., Safir, G.R., Siqueira, J.O., Parent, S. Effect of phenolic compounds on asparagus mycorrhizae. Soil Biol Biochem 1991; 23:491–494. CrossRefGoogle Scholar
  80. Pedras, M.S.C., Khan, A.Q. Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 2000a; 53:59–69. CrossRefGoogle Scholar
  81. Pedras, M.S.C., Okanga, F.I., Zaharia, I.L., Khan, A.Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 2000b; 53:161–176. CrossRefGoogle Scholar
  82. Pegg, G.F., Woodward, S. Synthesis and metabolism of alpha tomatine in tomato Lycopersicon esculentum isolines in relation to resistance to Verticillium albo-atrum. Physiol Mol Plant Pathol 1986; 28:187–202. Google Scholar
  83. Peirce, L.C., Colby, L.W. Interaction of asparagus root filtrate with Fusarium oxysporum f.sp. asparagi. J Am Soc Hort Sci 1987; 112:35–40. Google Scholar
  84. Peters, N.K., Long, S.R. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 1988; 88:396–400. PubMedGoogle Scholar
  85. Proctor J.T.A., Bailey, W.G. Ginseng, industry botany and culture. Hort Rev 1987; 9:187–236. Google Scholar
  86. Punja, Z.K. Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia. Can J Plant Pathol 1997; 19:301–306. CrossRefGoogle Scholar
  87. Quidde, T., Osbourn, A.E., Tudzynski, P. Detoxification of alpha-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 1998; 52:151–165. CrossRefGoogle Scholar
  88. Rahouti, M. Seigle-Murandi, F., Steiman, R., Eriksson, K.E. Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl Env Microbiol 1989; 55:2391–2398. Google Scholar
  89. Reeleder, R.D., Brammall, R.A. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can J Plant Pathol 1995; 16:311–316. CrossRefGoogle Scholar
  90. Reeleder, R.D., Roy, R., Capell, B. Seed and root rots of ginseng (Panax quinquefolius) caused byCylindrocarpon destructans and Fusarium spp. Phytopathology 1999; 89:S65. Google Scholar
  91. Rice, E.L. Allelopathy. Academic Press Inc., New York, 1984. Google Scholar
  92. Roddick, J.G. Complex formation between solanaceous steroidal glycoalkaloids and free sterols in vitro. Phytochemistry 1979; 18:1467–1470. CrossRefGoogle Scholar
  93. Roldán-Arjona, T., Pérez-Espinosa, A., Ruiz-Rubio, M. Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. Mol Plant Microb Interact 1999; 12:852–861. Google Scholar
  94. Sandrock, R.W., Van Etten, H.D. Fungal sensitivity to and enzymatic degradation of the phytoanticipin a-tomatine. Phytopathology 1998; 88:137–143. PubMedGoogle Scholar
  95. Schlessman, M.A. Floral biology of American ginseng (Panax quinquefolium). Bull Torrey Bot Club 1985;112:129–133. CrossRefGoogle Scholar
  96. Schmidt, S.K., Ley, R.E. Microbial competition and soil structure limit the expression of allelochemicals in nature. In Principles and Practices in Plant Ecology: Allelochemical Interactions, Inderjit, K.M.M., Dakshini, Foy, C.L. ed. Boca Raton: CRC Press, 1999, pp. 339–351. Google Scholar
  97. Scow, K.M. Soil microbial communities and carbon flow in agroecosystems. In Ecology in Agriculture. Jackson, L.E. ed. Academic Press, N.Y. 1997, pp. 367–413. Google Scholar
  98. Shepherd, T. The microchemistry of plant/microorganism interactions. In Ecology of Plant Pathogens. Blakeman, J.P., Williamson, B. ed.,Wallingford: CAB International, 1994, pp. 39–62. Google Scholar
  99. Shin, H.S., Lee, M.W. Environmental factors and the distribution of soil microorganisms in ginseng field. Kor J Microbiol 1986; 24:184–193. Google Scholar
  100. Singh, H.P., Batish, D.R., Kohli, R.K. Autotoxicity: concepts, organisms, and ecological significance. Crit Rev Plant Sci 1999; 18:757–772. Google Scholar
  101. Small, E., Catling, P.M. Canadian medicinal crops. NRC Research Press, Ottawa, ON, 1999. Google Scholar
  102. Sparling, G.P., Ord, B.G., Vaughan, D. Microbial biomass and activity in soils amended with glucose. Soil Biol Biochem 1981; 13:99–104. CrossRefGoogle Scholar
  103. Steel, C.C., Drysdale, R.B. Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine. Phytochemistry 1988; 27:1025–1030. CrossRefGoogle Scholar
  104. Straney, D.C., Van Etten, H.D. Characterization of the PDA1 promoter of Nectria haematococca and identification of a region that binds a pisatin-responsive DNA binding factor. Mol Plant Microb Interact 1994; 7:256–266. Google Scholar
  105. Suleman, P., Tohamy, A.M., Saleh, A.A., Madkour, M.A., Straney, D.C. Variation in sensitivity to tomatine and rishitin among isolates of Fusarium oxysporumf. sp. lycopersici, and strains not pathogenic on tomato. Physiol Mol Plant Pathol 1996; 48:131–144. CrossRefGoogle Scholar
  106. Szabo, K., Wittenmayer, L. Plant specific root exudations as possible cause for specific replant diseases in Rosaceen. J Appl Bot 2000; 74:191–197. Google Scholar
  107. Takechi, M., Tanaka, Y. Structure-activity relationships of the saponin α-hederin. Phytochemistry 1990; 29:451–452. CrossRefGoogle Scholar
  108. Tang, C.S., Young, C.S. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 1982; 69:155–160. PubMedCrossRefGoogle Scholar
  109. Tani, T., Kubo, M., Katsuki, T., Higashino, M., Hayashi, T., Arichi, S. Histochemistry II. Ginsenosides in ginseng (Panax ginseng root). J Nat Prod 1981; 44:401–407. Google Scholar
  110. Turner, E.M.C. The nature of the resistance of oats to the take-all fungus. II. Inhibition of growth and respiration of Ophiobolus graminis Sacc. and other fungi by a constituent of oat sap. J Exp Bot 1956; 7:80–92. Google Scholar
  111. Utkhede, R.S., Sholberg, P.L., Smirle, M.J. Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infested soil. Can J Plant Pathol 2001; 23:163–167. CrossRefGoogle Scholar
  112. Van Etten, H.D., Mansfield, J.W., Bailey, J.A., Farmer, E.E. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 1994; 6:1191–1192. CrossRefGoogle Scholar
  113. Van Etten, H.D., Sandrock, R.W., Wasmann, C.C., Soby, S.D., McCluskey, K., Wang, P. Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 1995; 73:518–525. Google Scholar
  114. Wardle, D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogenlevels in soil. Biol Rev 1992; 67:321–358. Google Scholar
  115. Weete, J.D. Structure and function of sterols in fungi. Adv Lipid Res 1989; 23:115–167. Google Scholar
  116. Weltring, K.M., Wessels, J., Geyer, R. Metabolism of the potato saponins α-chaconine and α-solanine by Gibberella pulicaris. Phytochemistry 1997; 46:1005–1009. CrossRefGoogle Scholar
  117. Zimmer, D.E., Pedersen, M.W., McGuire, D.F. A bioassay for alfalfa saponins using the fungus Trichoderma viride Pers. ex Fr. Crop Sci 1967; 7:223–224. CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.NovoBiotic PharmaceuticalsCambridgeUSA

Personalised recommendations