Advertisement

BACTERIAL ROOT ZONE COMMUNITIES, BENEFICIAL ALLELOPATHIES AND PLANT DISEASE CONTROL

Chapter
Part of the Disease Management of Fruits and Vegetables book series (DMFV, volume 2)

Abstract

The release of root exudates from plants encourages the formation of beneficial bacterial communities in the root zone capable of generating secondary metabolites that improve plant health and crop yield. Metabolites with antibiotic or lytic action have been identified, while others are known to induce systemic disease resistance in the host plant, or interfere with the nutritional requirements of phytopathogens. However, despite existing positive relationships between bacterial communities and their plant hosts, man-made attempts at applying bacteria for biocontrol purposes have met with limited success. Inconsistent performance of biocontrol bacteria in the field may be due to the variable expression of genes involved in the biocontrol action, or simply the resistance of established soil communities to a sudden and inundative influx of adventive bacterial species or strains. Regardless of the inherent capacity of ‘naturally occurring’ soil microbial ecosystems to buffer anthropogenic interference, crop management systems are regularly used to distort agro-ecosystems through, for example, the use of tillage operations, alternate cropping systems, monoculture, crop rotation length, fertilizer and organic amendments, and various crop protection chemistries. The management of soil microbial communities for disease control appears to involve, in part, the creation of short term chaos in the microbial community through the application of such perturbation stresses. While hope remains that bacterial communities with biocontrol activity will one day be used as an adjunct to, or replacement for, agrichemical crop protectants, reliable biological controls that moderate pathogen attack remain elusive. In the interim, disease suppressive soils may be encouraged to form through the use of modest perturbation stresses that promote microflora species’ diversity and functionalities underpinning natural bioantagonism.

Keywords

Root Zone Soil Microbial Community Biocontrol Agent Fusarium Wilt Pseudomonas Fluorescens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abawi, G.S., Widmer, T.L. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 2000; 15:47–47. CrossRefGoogle Scholar
  2. Albus, A.M., Pesci, E. C., Runyen-Janecky, L. J., West, S. E. H., Iglewski, B.H. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997; 179:3928–3935. PubMedGoogle Scholar
  3. Alexander, M. Microbial communities and interactions: a prelude. In Manual of Environmental Microbiology. Hurst, C.J., Knudsen, G.R., McInerney, M.J., Stetzenbach, L.D., Walter M.V., eds.,ASM Press: Washington, 1997; pp. 5–13. Google Scholar
  4. Andrews, J.H., Harris, R.F. The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 2000; 38:145–180. PubMedCrossRefGoogle Scholar
  5. Atlas, R.M. Applicability of general ecological principles to microbial ecology. In, Bacteria in Nature. Poindexter, J.S., Leadbetter, E.R., eds. Volume 2, Plenum Press: New York, 1986; pp. 339–370. Google Scholar
  6. Armitage, J.P. Behavioral responses in bacteria. Annu Rev Physiol 1992; 54:683–714 PubMedCrossRefGoogle Scholar
  7. Bainton, N.J., Stead, P., Chhabra, S.R., Bycroft, B.W., Salmond, G.P., Stewart G.S.A.B, Williams, P. N–(3- oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 1992; 288:997–1004. PubMedGoogle Scholar
  8. Baker, R. Mechanisms of biological control of soil-borne pathogens. Annu Rev Phytopathol 1968; 6:263–94. CrossRefGoogle Scholar
  9. Baker, K.F., Cook, R.J. Examples of biological control. In, Biological Control of Plant Pathogens,Baker K.F, Cook, R.J. Freeman: San Francisco, 1974; pp. 61–106. Google Scholar
  10. Baker, K. Evolving Concepts of Biological Control of Plant Pathogens. Ann Rev Phytopathol 1987; 25: 67–85. CrossRefGoogle Scholar
  11. Bakker, P.A.H.M., Glandorf, D.C.M., Viebahn, M., Ouwens, T.W.M., Smit, E., Leeflang, P., Wernars, K., Thomashow, L.S., Laureijs, E., Thomas-Oates, J.E., Bakker, P.A.H.M.,Leendert C. van Loon, L.C. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek Int. J Gen Mol Microbiol 2002; 81:617–24. Google Scholar
  12. Bakker, A.W., Schippers, B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. - mediated plant growth-stimulation. Soil Biol Biochem 1987; 19: 451–57. CrossRefGoogle Scholar
  13. Barber, C.E. Tang, J.L., Feng, J.X., Pan M.Q., Wilson, T.J. et al. A novel regulatory system for the pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 1997; 24:555–566. PubMedCrossRefGoogle Scholar
  14. Bashan, Y. Field dispersal of Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. vesicatoria, and Alternaria macrospora by animals, people, birds, insects, mites, agricultural tools, aircraft, soil particles,and water sources. Can J Bot 1986; 64:76–281. Google Scholar
  15. Bauer, W.D., Robinson, J.B. Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechol 2002; 13:234–237. CrossRefGoogle Scholar
  16. Beck von Bodman, S., Farrand, S.K. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 1995; 177: 5000–5008. PubMedGoogle Scholar
  17. Bender, C.L., Rangaswamy, V., Loper J. Polyketide production by plant associated pseudomonads. Annu Rev Phytopathol 1999; 37:175–196. PubMedCrossRefGoogle Scholar
  18. Benhamou, N., Kloepper, J.W., Quadt-Hallman, A., Tuzun, S. Induction of defence-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 1996; 112: 919–929. PubMedGoogle Scholar
  19. Bensalim, S., Nowak, J., Asiedu, S. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am Pot J 1998; 75:145–152. Google Scholar
  20. Bockhus, W.W., Shroyer, J.P. The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 1998; 36:485–500. CrossRefGoogle Scholar
  21. Boller, T. Chemoperception of Microbial Signals in Plant Cells. Annu. Rev. Plant Physiol. Plant Mol. Biol 1995; 46:189–214. CrossRefGoogle Scholar
  22. Bolton, H.J., Frederickson, J.K. and Elliott, L.F. Microbial ecology of the rhizosphere. In Soil Microbial Ecology,Metting F.B.J. ed. Marcel Dekker: New York, 1993; pp. 27–63. Google Scholar
  23. Bowen, G.D., Rovira, A.D. Microbial colonization of plant roots. Annu Rev Phytopathol 1976; 14:121–44. CrossRefGoogle Scholar
  24. Boyer, J.S. Biochemical and Biophysical Aspects of Water Deficits and the Predisposition to Disease. Annu Rev Phytopathol 1995; 33:251–74. CrossRefPubMedGoogle Scholar
  25. Breines, D., Burnham, J. Modulation of Escherichia coli type 1 fimbrial expression and adherence to uroepithelial cells following exposure of logarithmic phase cells to quinolones at subinhibitory concentrations. J Antimicrob Chemother 1994; 34:205–21. PubMedGoogle Scholar
  26. Brooks, D.S., Gonzalez, C.F., Appel, D.N., Filer, T.H. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Cont 1994; 4:373–381. CrossRefGoogle Scholar
  27. Buysens, S., Poppe, J., Hofte, M. Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In, Improving plant productivity with rhizosphere bacteria. Ryder, M.H., Stephens P.M., Bowens G.D., eds. CSIRO: Adelaide, 1994; pp. 139–141. Google Scholar
  28. Chanway, C.P. Endophytes: they’re not just fungi! Can J Microbiol 1996; 74:321–322. Google Scholar
  29. Chao, W.L., Alexander, M., Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 1984; 47:94–97. PubMedGoogle Scholar
  30. Chen, W., Hoitink, H.A J., Schmittenner, A.F. Factors affecting suppression of Pythium damping-off in container media amended with composts. Phytopathology 1987a; 77:755–60. Google Scholar
  31. Chen, W., Hoitink, H.A.J., Tuovinen, O.H. The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology 1987; 78:314–22. Google Scholar
  32. Chernin, L., Chet I. Microbial enzymes in biocontrol of plant pathogens and pests. In, Enzymes in the Environment: Activity, Ecology, and Applications. Burns, R.G., Dick, R.P., eds. Marcel Dekker: New York, 2002; pp. 171–225. Google Scholar
  33. Clay, K. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 1988; 69:10–16. CrossRefGoogle Scholar
  34. Claydon, N., Allan, M., Hanson, J. R., Avent, A.G., Antifungal alkyl pyrones of Trichoderma harzianum.Trans Br Mycol Soc 1987; 88:503–13. CrossRefGoogle Scholar
  35. Cohen, R., Chefetz, B., Hadar, Y., Suppression of soil-borne pathogens by composted municipal solid waste. In, Beneficial co-utilization of agricultural, municipal and industrial bi-products. Brown, S., Angle, J.S., Jacobs, L., eds. Kluwer Academic Publishers: Dordrecht, Netherlands, 1998, pp. 113–130. Google Scholar
  36. Conn, K.L., Nowak, J., Lazarovits, G. A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can J Microbiol 1997; 43:801–808. Google Scholar
  37. Cooke, R.C., Rayner, A.D.M. Ecology of Saprotrophic Fungi. Longman Group Limited: London, 1984. Google Scholar
  38. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P. The involvement of cell-to cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298. PubMedCrossRefGoogle Scholar
  39. Davis, J.G., Callihan, R.H., Effects of gypsum, sulfur, terractor, and terractor super-x for potato scab control. Am Pot J 1974; 51:35–43. Google Scholar
  40. De Brito Alvarez, M.A., Gagne S., Antoun., H. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. App Envir Microbiol 1995; 61(1):194–199. Google Scholar
  41. Delany, I.R., Walsh, U.F., Ross, I., Fenton, A.M, Corkery, D.M., O’Gara, F. Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol. Plant Soil2001; 232:195–205. CrossRefGoogle Scholar
  42. Dong, Y.H, Xu, J.L., Li, X.Z., Zhang, L.H. AiiA, an enzyme that inactivates the acyl-homoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Sci 2000; 97: 3526–3531. CrossRefGoogle Scholar
  43. Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F., Zhang, L.H. Quenching quorum sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 2001; 411:813–817. PubMedCrossRefGoogle Scholar
  44. Dong, Y.H., Gusti, AR, Zhang, Q., Xu, J.L., Zhang, L.H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 2002; 68:1754–1759. PubMedCrossRefGoogle Scholar
  45. Dowling, D.N., Sexton, R., Fenton, A., Delany, I., Fedi, S., McHugh, B., Callanan, M., Moënne-Loccoz, Y., O’Gara, F. Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control. In Molecular Biology of Pseudomonads. Nakazawa, K., Furukawa, K., Haas D. and Silver S. eds. ASM Press: Washington, 1996; pp. 502–511. Google Scholar
  46. Duffy, BK., Défago, G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 1999; 65:2429–2438. PubMedGoogle Scholar
  47. Duniway, J.M. Predisposing effect of water stress on the severity of Phytophthora root rot of safflower. Phytopathology 1977; 67:884–89. CrossRefGoogle Scholar
  48. Dunny, G.M., Winans, S.C. Bacterial life: neither dull nor boring. In, Cell-Cell Signaling in Bacteria. Dunny G.M., Winans S.C., eds., ASM Press: Washington, 1999; pp. 1–5. Google Scholar
  49. Dusenbery, D.B. Sensory Ecology: How Organisms Acquire and Respond to Information. Freeman:New York, 1992. Google Scholar
  50. Dworkin, M., Kaiser, D. Cell interactions in myxobacterial growth and development. Science 1985; 230: 18–24. PubMedGoogle Scholar
  51. Eberl, L. N-acyl homoserine lactone mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 1999; 22:493–506. PubMedGoogle Scholar
  52. Edmunds, L.K. Combined relation of plant maturity, temperature and soil moisture to charcoal rot development in grain sorghum. Phytopathology 1964; 54:514–17. Google Scholar
  53. Foster, R.E., Walker, J.C. Predisposition of tomato to Fusarium wilt. J Agr Res 1947; 74:165–85. Google Scholar
  54. Fox, R.T., Manners, J.G., Myers, A. Ultrastructure of entry and spread of Erwinia carotovora var atroseptica into potato tubers. Potato Res 1971; 14:61–73. CrossRefGoogle Scholar
  55. Frankowski, J., Lorito, M., Scala, F., Schmidt, R., Berg, G., Bahl, H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 2001; 176:421–426. PubMedCrossRefGoogle Scholar
  56. Fridlender, M., Inbar, J., Chet, I. Biological control of soilborne plant pathogens by a â-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 1993; 25:1211–1221. CrossRefGoogle Scholar
  57. Fujimoto, D.K., Weller, D.M., Thomashow, L.S. Role of secondary metabolites in root disease suppression. In, Allelopathy: organisms, processes and applications. Inderjit, K.M.M. Dakshini, Einhellig F.A., eds., ACS Symposium Series: Washington, D.C. 1995; pp. 330–347. Google Scholar
  58. Fuqua, C., Parsek, M.R., Greenberg, E.P.Regulation of gene expression by cell-to-cell communications: acylhomoserine lactone quorum sensing. Annu Rev Genet 2001; 35:439–468. PubMedCrossRefGoogle Scholar
  59. Gaballa, A., Abeysinghe, P.D., Urich, G., Matthijs, S., Degreve, H. Trehalose induces antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400. Appl Environ Microbiol 1997; 63:4340–4345 PubMedGoogle Scholar
  60. Gilbert, G.S., Handelsman, J., Parke, J.L. Root camouflage and disease control. Phytopathology 1994; 84:222–225. Google Scholar
  61. Givskov, M., Eberl, L., Molin, S. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol Lett 1997; 148:115–122. Google Scholar
  62. Glick, B.R., Patten, C.L., Holguin, G., Penrose, D.M. Auxin Production. In, Biochemical and genetic mechanisms used by plant growth promoting bacteria. Glick, B.R., Patten, C.L., Holguin, G., Penrose, D.M. eds. Imperial College Press: London, 1999; pp. 86–133. Google Scholar
  63. Glickman, E., Gardan, L., Jaquet, S., Hussain, S., Elasri, M., Petit, A., Dessaux, Y. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant-Microbe Interact 1998; 11:156–162. Google Scholar
  64. Grayston, S.J., Wang, S., Campbell, C.D., Edwards, A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 1998; 30:369–378. CrossRefGoogle Scholar
  65. Grimwood, K., To, M., Rabin, H.R., Woods, D.E. Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 1989; 33:41–47. PubMedGoogle Scholar
  66. Gorodecki, B., Hadar, Y. Suppression of Rhizoctonia solani and Sclerotium rolfsii in container media containing composted separated cattle manure and composted grape marc. Crop Prot 1990; 9:271–274. CrossRefGoogle Scholar
  67. Gutterson, N., Ziegle, J.S., Warren, G.J., Layton, T.J. Genetic determinants for catabolite induction of antibiotic biosynthesis in Pseudomonas fluorescens HV37a. J Bacteriol 1988; 170:380–385. PubMedGoogle Scholar
  68. Haas, D., Keel, C. Regulation of antibiotic production in root-colonization Pseudomonas spp. and relevance for biocontrol of plant disease. Annu Rev Phytopathol 2003; 41:117–153. Google Scholar
  69. Hashidoko, Y., Nakayama, T., Homma, Y., Tahara, S. Structure elucidation of xanthobaccin A, a new antibiotic produced from Stenotrophomonassp. strain SB-K88. Tetrahedron Lett 1999; 40:2957–2960. CrossRefGoogle Scholar
  70. Hawes, M.C., Brigham, L.A., Wen, F., Woo, H.H., Zhu, Y. Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 1998; 36:311–327. PubMedCrossRefGoogle Scholar
  71. Hawes, M.C., Brigham, L.A. Impacts of root border cells on microbial populations in the rhizosphere. Adv Plant Pathol 1992; 8:119–148. Google Scholar
  72. He, H., Silo-Suh, L.A., Clardy, J., Handelsman, J. Zwittermycin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 1994; 35:2499–502. CrossRefGoogle Scholar
  73. Herbert, S., Barry, P., Novick, R.P. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect Immun 2001; 69:2996–3003. PubMedCrossRefGoogle Scholar
  74. Hinton, D.M., Bacon, C.W. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 1995; 129:117–125. PubMedCrossRefGoogle Scholar
  75. Hoagland, R.E., Cutler, S.J. Plant microbial compounds as herbicides. In, Allelopathy in Ecological Agriculture and Forestry,Narwal, S.S., Hoagland, R.E., Dilday, R.H., Reigosa, M.J. eds., (Proceedings of the III International Congress on Allelopathy in Ecological Agriculture and Forestry, Dharwad, India. 18–21 August 1998). Kluwer Academic Publications: London, 2000; pp.73–99. Google Scholar
  76. Hoch, J.A. Control of cellular development in sporulating bacteria by the phosphorelay two-component signal transduction system. In, Two component signal transduction. Hoch, J.A., Silvay, T.J. eds., ASM Press: Washington, D.C. 1995; pp. 129–144. Google Scholar
  77. Hoffland, E., Pieterse, C., Bik, L., van Pelt, J.A. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 1995; 46:309–320. CrossRefGoogle Scholar
  78. Hoitink, H.A.J, Boehm, M.J. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 1999; 37:427–446. PubMedCrossRefGoogle Scholar
  79. Hoitink, H.A.J., Fahy, P.C. Basis for the control of soilborne plant pathogens with composts. Ann Rev Phytopathol 1986; 24:93–114. CrossRefGoogle Scholar
  80. Hoitink, H.A.J., Stone, A.G., Han, D.Y. Suppression of plant disease by composts. HortScience 1997; 32:184–197. Google Scholar
  81. Holden, M.T.G., Chhabra, S.R. de Nys, R., Stead, P., Bainton, N.J., Hill, P.J., Manefield, M., Kumar, N., Labatte, M., England, D., Rice, S., Givskov, M., Salmond, G.P.C., Stewart, G.S.A.B., Bycroft, B.W., Williams, P. Quorum sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 1999; 33:1254–1266. PubMedCrossRefGoogle Scholar
  82. Hornby, D. Suppressive soils. Ann Rev Phytopathol 1983; 21:65–85. CrossRefGoogle Scholar
  83. Hornby, D. Take-all decline: a theorist’s paradise. In, Soilborne plant pathogens. Schippers B., Gams W., eds., Academic Press: New York, 1979; pp. 133–156. Google Scholar
  84. Huber, D.M., Schneider, R.W. The description and occurrence of suppressive soils. In, Suppressive Soils and Plant Disease. Schneider, R.W. ed. APS: St. Paul, Minnesota, 1982; pp. 1–7. Google Scholar
  85. International Allelopathy Society (IAS). Article 2, IAS Constitution (draft), Second Newsletter 1998, http:// www2.uca.es/dept/quimica_organica/ias/newslett2.htm#draft International Allelopathy Society. Department of Biochemistry, Oklahoma State University, Stillwater, Oklahoma, USA, 1998. Google Scholar
  86. Jacobson, C.B., Pasternak, J.J., Glick, B.R. Partial purification and characterization of ACC deaminase from plant-growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 1994; 40:1019–1025. Google Scholar
  87. Jetiyanon, K., Tuzun, S., Kloepper J. Lignification, peroxidase and superoxide dismutases as early plant defence reactions associated with PGPR-mediated induced systemic resistance. In, Plant growth-promoting rhizobacteria: present status and future prospects. Kobayashi, K., Homma, Y., Kodama, F., Kondo N., Akino, S. eds. OECD: Paris, France, 1997; pp. 265–268. Google Scholar
  88. Kamensky, M., Ovadis, M., Chet, I., and Chernin, L. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 2003; 35:323–331. CrossRefGoogle Scholar
  89. Keel, C., Défago, G. Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In, Multitrophic Interactions in Terrestrial Systems. Gange A.C., Brown, V.K. eds. Blackwell Science Ltd.: London, UK, 1997; pp. 27–46. Google Scholar
  90. Kleerebezem, M., Quadri, L.E. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behaviour. Peptides 2001; 22:1579–1596. PubMedCrossRefGoogle Scholar
  91. Kloepper, J.W., Schroth, M.N. Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 1981; 71:590–92. Google Scholar
  92. Lapwood, D.H., Wellings, L.W., Hawkins, J.H. Irrigation as a practical means to control potato common scab (Streptomyces scabies): final experiment and conclusions. Plant Pathol 1973; 22:35–41. Google Scholar
  93. Leadbetter, J.R. Plant microbiology. Quieting the raucous crowd. Nature 2001; 411:748–749. CrossRefGoogle Scholar
  94. Leadbetter, J.R., Greenberg, E.P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 2000; 182:6921–6926. PubMedCrossRefGoogle Scholar
  95. Leeman, M., Denouden, E.M., Vanpelt, J.A., Dirkx, F., Steijl, H., Bakker, P.A.H.M., Schippers, B. Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 1996; 86:49–55. Google Scholar
  96. Leeman, M., Vanpelt, J.A., Denouden, F.M., Heinsbroek, M., Bakker, P.A.H.M, Schippers, B. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 1995; 85:1021–27. Google Scholar
  97. Levy, E., Carmelli, S. Biological control of plant pathogens by antibiotic-producing bacteria. In, Allelopathy: organisms, processes and applications. Inderjit, K.M.M. Dakshini, Einhellig, F.A. eds., ACS Symposium Series: Washington, D.C., 1995, pp. 300–309. Google Scholar
  98. Ligon, J.M., Hill, D.S., Hammer, P.E., Torkewitz, N.R., Hofmann, D., Kempf, H.J., van Pée, K.H. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 2000; 56: 688–695. CrossRefGoogle Scholar
  99. Lim, H.S., Kim, Y.S., Kim, S.D. Pseudomonas stutzeriYPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 1991; 57:510–516. PubMedGoogle Scholar
  100. Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R., Zhang, L.H. Acyl- homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 2003; 47:849–860. PubMedCrossRefGoogle Scholar
  101. Lynch, J.M. Products of soil microorganisms in relation to plant growth. CRC Crit Rev Microbiol 1976; 5: 67–107. PubMedGoogle Scholar
  102. Loper, J.E., Henkels, M.D. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 1997; 63:99–105. PubMedGoogle Scholar
  103. Loper, J.E., Henkels, M.D. Utilisation of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 1999; 65:5357–5363. PubMedGoogle Scholar
  104. MacDonald, J.D. Effect of salinity stress on the development of Phytophthora root rot of chrysanthemum. Phytopathology 1982; 72:214–19. Google Scholar
  105. Mallik, A.U. Challenges and opportunities in allelopathy research: a brief overview. J Chem Ecol 2000; 26:2007–2009. CrossRefGoogle Scholar
  106. Marschener, P., Crowley, D.E. Iron stress and pyoverdin production by a fluorescent pseudomonad in the rhizosphere of white lupin (Lupinus albus L.) and barley (Hordeum vulgare L.) Appl Environ Microbiol 1997; 63:277–281. Google Scholar
  107. Maurhofer, M., Hase, C., Meuwley, P., Métraux, J.P., Défago, G. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 1994; 84:139–46. Google Scholar
  108. Merharg, A.A., Killham, K. Loss of exudates from roots of perennial rye-grass inoculated with a range of microorganisms. Plant Soil 1995; 170:345–349. CrossRefGoogle Scholar
  109. Miller, M.B., Bassler, B.L. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55:165–199. PubMedCrossRefGoogle Scholar
  110. Misaghi, I.J., Donndelinger, C.R. Endophytic bacteria in symptom-free cotton plants. Phytopathology 1990; 80:808–811. Google Scholar
  111. Mukerji, K.G., Chamola, B.P., Upadhyay, R.K. eds. Biotechnolocal approaches in Biocontrol of Plant Pathogens. Kluwer Academic/Plenum Publishers, New York, Dordrecht, London, 1999; 255 p. Google Scholar
  112. Nakata, K., Yoshimoto, A., Yamada, Y. Promotion of antibiotic production by high ethanol, high NaCl concentration, or heat shock in Pseudomonas fluorescens S272. Biosci Biotechnol Biochem 1999; 63: 293–297. PubMedCrossRefGoogle Scholar
  113. Nelson, E.B., Hoitink, H.A.J. The role of microorganisms in the suppression of Rhizoctonia solani in container media amended with composted hardwood bark. Phytopathology 1983; 73:274–78. CrossRefGoogle Scholar
  114. Normander, B., Hendriksen, N.B., Nybroe, O. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol 1999; 65:4646–51. PubMedGoogle Scholar
  115. O’Sullivan, D.J., O’Gara, F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 1992; 56:662–676. Google Scholar
  116. Odum, E.P., Finn, J.T., Franz, E.H. Perturbation theory and subsidy-stress gradient. BioScience 1979; 29:349–352. CrossRefGoogle Scholar
  117. Oestergaard, S.P., Nielsen, S. Control of potato scab (Streptomyces scabies) by irrigation. Tidsskrift for Planteavl 1979; 83:201–204. Google Scholar
  118. Parmar, N. Dardarwal, K.R. Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 1999; 86:36–44. Google Scholar
  119. Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E. Jr., Greenberg E.P. Acyl homoserine-lactone quorumsensing signal generation. Proc Natl Acad Sci USA. 1999; 13:4360–4365. CrossRefGoogle Scholar
  120. Patten, C.L., Glick, B.R. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 1996; 42:207–220. PubMedCrossRefGoogle Scholar
  121. Peters, R.D., Sturz, A.V., Carter, M.R., Sanderson, J.B. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Till Res 2003; 72:139–152. CrossRefGoogle Scholar
  122. Petersen, C.A., Emanuel, M.E., Humphreys, G.B. Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 1981; 59:618–625. Google Scholar
  123. Pierson, E.A., Wood, D.W., Cannon, J.A., Blachere, F.M. III. LSP: interpopulation signaling via homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Interact 1998; 11:1078–1084. Google Scholar
  124. Piper, K.R., Beck von Bodman, S., Farrand S.K. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 1993; 362:448–450. PubMedCrossRefGoogle Scholar
  125. Pirhonen, M., Flego, D., Heikinheimo, R., and Palva, E.T. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.EMBO J 1993; 12:2467–2476. PubMedGoogle Scholar
  126. Raaijmakers, J.M., Vlami, M., de Souza, J.T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek Int Genet Mol Microbiol 2002; 81:537–547. CrossRefGoogle Scholar
  127. Romeo, J.T. Raising the beam: moving beyond phytotoxicity. J Chem Ecol 2000; 26:2011–2014. CrossRefGoogle Scholar
  128. Roos, I.M.M., Hattingh, M.J. Scanning electron microscopy Pseudomonas syringae pv. morsprunorum on sweet cherry leaves. Phytopathol Z 1983; 108:18–25. CrossRefGoogle Scholar
  129. Salmond, G.P.C., Bycroft, B.W., Stewart, G.S.A.B., Williams, P., The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol 1995; 16:615–624. PubMedGoogle Scholar
  130. Sayre, R.M., Patrick, Z.A., Thorpe. H.J. Identification of a selective nematicidal component in extracts of plant residues decomposing in soil. Nematologica 1965; 11:263–68. CrossRefGoogle Scholar
  131. Sayre, R.M., and Starr, M.P. Bacterial diseases and antagonisms of nematodes. In Diseases of nematodes. Poinar, G.O., Jansson H.B. eds. CRC Press: Florida, U.S.A, 1988; pp. 69–101. Google Scholar
  132. Schroth, M.N., Loper, J.E., Hildebrand, D.C. Bacteria as agents of plant edisease. In Current Perspectives in Microbial Ecology. Klug, M.J., Reddy, C.C. eds. Am Soc Microbiol: Washington, D.C., U.S.A. 1984; pp. 362–369. Google Scholar
  133. Schroth, M.N., Hancock, J.G. Disease-suppressive soil and root-colonizing bacteria. Science 1982; 216:1376–81. PubMedGoogle Scholar
  134. Schulz, F.A., Bateman, D.F. Temperature response of seeds during the early stages of germination and its relation to injury by Rhizoctonia solani. Phytopathology 1969; 59:352–55. Google Scholar
  135. Scott, R.I., Chard, J.M., Hocart, M.J., Lennard, J.H., Graham, D.C. Penetration of potato tuber lenticels by bacteria in relation to biological control of blackleg disease. Potato Res 1996; 39:333–344. CrossRefGoogle Scholar
  136. Shanahan, P., O’Sullivan, D.J., Simpson, P., Glennon, J.D., O’Gara, F. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 1992; 58:353–358. PubMedGoogle Scholar
  137. Shipton, P.J. Take-all decline during cereal monoculture. In Biology and Control of Plant Pathogens,Bruehl G.W. ed., St. Paul, MN: Am. Phytopathol. Soc. 1975; pp. 137–144. Google Scholar
  138. Siciliano, S.D., Theoret, C.M., de Freitas, J.R., Hucl, P.J., Germida, J.J. Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 1998; 44:844–851. CrossRefGoogle Scholar
  139. Silo-Suh, L.A., Lethbridge, B.J., Raffel, S.J., He, H., Clardy, J., Handelsman, J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 1994; 60:2023–30. PubMedGoogle Scholar
  140. Singh, P.P., Shin, Y.C., Park, C.S., Chung, Y.R. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 1999; 89:92–99. PubMedGoogle Scholar
  141. Slininger, P.J., Jackson, M.A. Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 1992; 37:388–392. CrossRefGoogle Scholar
  142. Slininger, P.J., Sheawilbur, M.A. Liquid culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 1995; 43:794–800. PubMedCrossRefGoogle Scholar
  143. Smith, K.P., Goodman, R.M. Host-variation for interaction with beneficial plant associated microbes. Annu Rev Phytopathol 1999; 37:473–491. PubMedCrossRefGoogle Scholar
  144. Smucker, A.J.M. Soil Environmental Modifications of Root Dynamics and Measurement. Annu Rev Phytopathol 1993; 31:191–216. CrossRefGoogle Scholar
  145. Stephens, P.M., Crowley, J.J., O’Connel, C. Selection of pseudomonad strains inhibiting Pythium ultimum on sugarbeet seed in soil. Soil Biol Biochem 1993; 25:1283–1288. CrossRefGoogle Scholar
  146. Sturz, A.V., Carter, M.R., Johnston, H.R. A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Till Res 1997; 41:169–189. CrossRefGoogle Scholar
  147. Sturz A.V., Christie, B.R. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Agro-ecosystems: Impacts of Management on Soil Health and Crop Diseases - Special Issue. Soil Till Res 2003; 72:107–123. CrossRefGoogle Scholar
  148. Sturz, A.V., Christie, B.R., Arsenault, W.J. Red clover-potato cultivar combinations for improved potato yield. Agron J 2003; 95:1089–1092. CrossRefGoogle Scholar
  149. Sturz, A.V., Christie, B.R., Nowak, J. Bacterial Endophytes: A Critical Component of Sustainable Crop Production, CRC Press, Crit Rev Plant Sci 2000; 19:1–30. Google Scholar
  150. Sturz, A.V., Christie, B.R., Matheson, B.G., Arsenault, W.J., Buchanan, N.A. Endophytic bacteria, antibiosis and community ecology in potato tubers, and implications for induced resistance against plant pathogens. Plant Pathol 1999; 48:360–370. CrossRefGoogle Scholar
  151. Sturz, A.V., Matheson, B.G., Arsenault, W.J., Kimpinski, J., Christie, B.R. Weeds as a source of beneficial rhizobacteria in agricultural soils. Can J Microbiol 2001; 47:1013–1024. PubMedCrossRefGoogle Scholar
  152. Sturz, A.V., Nowak, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 2000; 15:183–190. CrossRefGoogle Scholar
  153. Sturz, A.V., Ryan, D.A.J., Matheson, B.G., Arsenault, W.J., Kimpinski, J., Christie, B.R. Stimulating disease suppression in soils: sulphate fertilizers can increase biodiversity and antibiosis ability of root zone bacteria against Streptomyces scabies. Soil Biol Biochem 2004; 36:343–352. CrossRefGoogle Scholar
  154. Surette, M.G., Bassler, B.L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA. 1998; 95:7046–7050. PubMedCrossRefGoogle Scholar
  155. Szabolcs, I. The concept of soil resilience. In, Soil resilience and sustainable land use.Greenland, D.J. and Szabolcs, I. eds. CAB International: Wallingford, U.K. 1994; pp. 33–39. Google Scholar
  156. Tateda, K., Comte, R., Pechère, J.C., Köhler, T., Yamaguchi, K., Van Delden, C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother 2001; 45:1930–33. PubMedCrossRefGoogle Scholar
  157. Thomashow, L.S., Bonsall, R.F., Weller, D.M. Antibiotic production by soil rhizosphere microbes in situ. In Manual of environmental microbiology. Hurst, C.J., Knudsen, G.R., McInerney, M.J., Stetzenbach L.D., Walter, M.V. eds. ASM Press: Washington, 1997; pp. 493–499. Google Scholar
  158. Timms Wilson, T.M., Ellis, R.J., Renwick, A., Rhodes, D.J., Mavrodi, D.V., Weller, D.M., Thomashow, L.S., Bailey, M.J. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens.Mol Plant-Microbe Interact 2000; 13:1293–300. Google Scholar
  159. Tremblay, J., Beauchamp, C.J. Split applications of supplementary N fertilizer following incorporation of chipped ramical wood: changes in selected biological and chemical properties of a soil cropped to potatoes. Can J Soil Sci 1998; 78:275–282. Google Scholar
  160. Tu, J.C., Findlay, W.I. The effects of different green manure crops and tillage practices on pea root rots. British Crop Protection Conference - Pest and Diseases. British Crop Protection Council Publ.: Surrey, U.K. 1986; pp. 229–236. Google Scholar
  161. Tuzun S., Kloepper J.W. Induced systemic resistance by plant growth promoting rhizobacteria. In Improving Plant Productivity with Rhizosphere Bacteria. Ryder, M.H., Stephens, P.M., Bowen, G.D. eds. Proceedings of 3rd International Workshop on PGPR. CSIRO, Division of Soils: Adelaide. 1994; pp. 104–109. Google Scholar
  162. Van Buren, A.M., Andre, C., Ishimaru, C.A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 1993; 83:1406. Google Scholar
  163. van Peer, R., Punte, H.L.M., De Weger, L.A., Schippers, B. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl Environ Microbiol 1990; 56:2462–2470. PubMedGoogle Scholar
  164. van Peer R., Niemann, G.J., Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 1991; 81:728–34. Google Scholar
  165. van Wees, S.C.M., Luijendijk, M., Smoorenburg, I., van Loon, L.C., Pieterse, C.M.J. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsisis not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 1999; 41:537–549. PubMedCrossRefGoogle Scholar
  166. van Wees, S., Pieterse, C., Trijssenaar, A., Van’t Westende, Y., Hartog, F., Van Loon, L.C. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 1997; 10:716–24. PubMedGoogle Scholar
  167. Walker, J.C., Snyder, W.C. Pea wilt and root rots. Wisc Agr Exp Sta Bull 1933; 424:1–16. Google Scholar
  168. Wardle, D.A., Bonner, K.I., Nicholson, K.S. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 1997; 79:247–258. Google Scholar
  169. Wei, G., Kloepper, J.W., Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 1991; 81:1508–1512. Google Scholar
  170. Weller, D.M., Raaijmakers, J.M., McSpadden Gardener, B.B., Thomashow, L. Microbial populations responsible for specific soil suppressiveness to plant pathogens Ann. Rev. Phytopathol 2002; 40:309–348. CrossRefGoogle Scholar
  171. Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 1988; 26:379–407. CrossRefGoogle Scholar
  172. Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 2001; 52:487–511. PubMedGoogle Scholar
  173. Whitehead, N.A., Welch, M., Salmond, G.P.C. Silencing the majority. Nat. Biotechnology. 2001; 19:735–736. CrossRefGoogle Scholar
  174. Withers, H., Swift, S., Williams, P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 2001; 4:186–193. PubMedCrossRefGoogle Scholar
  175. Yamada, Y., Nihira, T. Microbial hormones and microbial chemical ecology. In Comprehensive Natural Products Chemistry Barton, D.H.R., Nakanishi, K. eds.. Elsevier: Oxford, 1998; pp.377–413. Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Prince Edward Island Department of AgricultureFisheries, Aquaculture and ForestryCanada

Personalised recommendations