Part of the Disease Management of Fruits and Vegetables book series (DMFV, volume 2)


Increasing attention has been given to the role and potential of allelopathy as a management strategy for crop protection against weeds and other pests. Incorporating allelopathy into natural and agricultural management systems may reduce the use of herbicides, insecticides, and other pesticides, reducing environment/soil pollution and diminish autotoxicity hazards. There is a great demand for compounds with selective toxicity that can be readily degraded by either the plant or by the soil microorganisms. In addition, plant, microorganisms, other soil organisms and insects can produce allelochemicals which provide new strategies for maintaining and increasing agricultural production in the future.


Ferulic Acid Cover Crop Sesquiterpene Lactone Weed Management Allelopathic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahim, D., Braguini, W.L., Kelmer-Bracht, A.M., Ishii-Iwamoto, E.L. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 2000; 26:611–624. CrossRefGoogle Scholar
  2. Ahonsi, M.O., Berner, D.K. Emechebe, A.M., Lagoke, S.T. Selection of rhizobacterial strains for suppression of germination of Striga hermonthica(Del.) Benth. Seeds. Biol Con 2002; 24:143–152. Google Scholar
  3. Anaya, A.L., S. del Amo. Allelopathic potential of Ambrosia cumanensis H.B.K. (Compositae) in a tropical zone of México. J Chem Ecol 1978; 4:289–304. CrossRefGoogle Scholar
  4. Anaya, A.L., Ramos, L., Cruz, R., Hernández, J., Nava, V. Allelopathy in Mexican Traditional Agroecosystems: A case study in Tlaxcala. J Chem Ecol 1987; 13:2083–2101. CrossRefGoogle Scholar
  5. Anaya, A.L., Hernández-Bautista, B.E., Torres-Barragán, A., León-Cantero, J. Jiménez-Estrada, M. Phytotoxicity of cacalol and some derivatives obtained from the roots of Psacalium decompositum(A. Gray) H. Rob & Brettell (Asteraceae), “matarique” or “maturín”. J Chem Ecol 1996; 22:393–403. CrossRefGoogle Scholar
  6. Anaya, A.L., Pelayo-Benavides, H.R. Allelopathic potential of Mirabilis jalapaL. (Nyctaginaceae): Effects on germination, growth and cell division of some plants. Allelopathy J 1997; 4:57–68. Google Scholar
  7. Anaya, A.L. Allelopathy as a Tool in the Management of Biotic Resources in Agroecosystems. Crit Rev Plant Sci 1999; 18: 697–739. CrossRefGoogle Scholar
  8. Anaya, A.L., Mata, R., Sims, J., González-Coloma, A., Cruz-Ortega, R., Guadaño, A., Hernández-Bautista B.E., Ríos, G., Gómez-Pompa, A. Allelochemical potential of Callicarpa acuminata(Verbenaceae). J Chem Ecol 2003; 29:2725–2740. CrossRefGoogle Scholar
  9. Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., Vivanco, J.M. 2002. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 2003; 128: 1173–1179. CrossRefGoogle Scholar
  10. Barazani, O. Friedman J. Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 2001; 27:41–55. Google Scholar
  11. Barberi, P. Weed management in organic agriculture: are we addressing the right issues? Weed Res 2002; 42:177–193. Google Scholar
  12. Batish, D.R., Tung, P., Singh, H., Kohli, R.K. Phytotoxicity of sunflower residues against some summer season crops. J Agron Crop Sc 2002; 188:19–24. CrossRefGoogle Scholar
  13. Bhowmik, P.C., Inderjit. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 2003; 22:661–671. CrossRefGoogle Scholar
  14. Blum U., King, L.D., Gerig, T.M., Lehman, M.E., Worsham, A.D. Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Amer J Altern Agricul 1997; 4:146–161. CrossRefGoogle Scholar
  15. Blum, U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 1998; 24:685–708. CrossRefGoogle Scholar
  16. Blum, U., Staman, K.L., Flint, L.J., Shafer, S. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol, 2000; 26:2059–2078. CrossRefGoogle Scholar
  17. Blum, U., King, L.D., Brownie, C. Effects of wheat residues on dicotyledonous weed emergence in a simulated no-till system. Allelopathy J 2002; 9:159–176. Google Scholar
  18. Borneman, J., Olatinwo, R., Yin, B., Becker J.O. An experimental approach for identifying microorganisms involved in specified functions: utilisation for understanding a nematode suppressive soil. Australasian Plant Pathol 2004; 33:151–155. CrossRefGoogle Scholar
  19. Burgos, N.R., Talbert, R.E. Weed control and sweet corn (Zea maysvar rugosa) response in a no-till system with cover crops. Weed Sci 1996; 44:355–361. Google Scholar
  20. Butler, L.G. Chemical communication between the parasitic weed Striga and its crop host. A new dimension of allelochemistry. In: Allelopathy: Organism, Processes and Application.Inderjit, Dakshini K.M.M., Einhellig, F.A. eds. ACS Symposium Series Washington, DC 1995; 582:158–168. Google Scholar
  21. Bouwmeester, H.J., Matusova, R., Zhongkui, S., Beale, M.H. Secondary metabolite signalling in host-parasitic plant interactions.Curr Opin Plant Biol 2003; 6:358–364. PubMedCrossRefGoogle Scholar
  22. Calera, M.R., Mata, R., Anaya A.L, Lotina, B. 5-O-b-D-galactopyranosyl-7-methoxy-3’, 4’-dihydro-4- phenylcoumarin, an inhibitor of photophosphorylation in spinach chloroplasts. Photosynth Res 1995a; 45:105–110. CrossRefGoogle Scholar
  23. Calera, M.R., Soto, F., Sanchez, P., Bye, R., Hernandez-Bautista, B. Anaya, A.L., Lotina-Hennsen, Mata, R. Biochemically active sesquiterpene lactones from Ratibida mexicana.Phytochemistry 1995b; 40:419–425. CrossRefGoogle Scholar
  24. Calera, M.R, Anaya, A.L., and Gavilanes-Ruiz, M. Effect of a phytotoxic resin glycoside on the activity of the H+-ATPase from plasma membrane. J Chem Ecol 1995c; 21:289–297. CrossRefGoogle Scholar
  25. Calera, M., Mata, R., Lotina-Hennsen, B., Anaya, A.L. Uncoupling behavior of the 4-phenylcoumarins in spinach chloroplasts- Structure-activity relationships. J Agr Food Chem 1996; 44:2966–2969. CrossRefGoogle Scholar
  26. Calvet C, Pinochet J, Camprubi A, Estaun V, Rodriguez-Kabana R. Evaluation of natural chemical compounds against root-lesion and root-knot nematodes and side-effects on the infectivity of arbuscular mycorrhizal fungi. J Plant Pathol 2001; 107:601–605. CrossRefGoogle Scholar
  27. Chavarria-Carvajal JA, Rodriguez-Kabana R, Kloepper JW, Morgan-Jones G. Changes in populations of microorganisms associated with organic amendments and benzaldehyde to control plant-parasitic nematodes. Nematropica 2001; 31:165–180. Google Scholar
  28. Chavarria-Carvajal, J.A., Rodriguez-Kabana, R. Changes in soil enzymatic activity and control of Meloidogyne incognita using four organic amendments. Nematropica 1998; 28:7–18. Google Scholar
  29. Chittapur, B.M., Hunshal, C.S., Shenoy H. Allelopathy in parasitic weed management: Role of catch and trap crops. Allelopathy J 2001; 8:147–159. Google Scholar
  30. Chou, C.H. Allelopathy and sustainable agriculture. ACS Symp. Ser. 1995; 582:211–223. Google Scholar
  31. Conklin, A.E., Erich, M.S., Liebman, M., Lambert, D., Gallandt, E.R., Halteman, W.A. Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Soil 2002; 238:245–256. CrossRefGoogle Scholar
  32. Cruz-Ortega, R., Anaya, A.L., and Ramos, L. Effects of allelopathic compounds of maize pollen on respiration and cellular division of watermelon. J Chem Ecol 1988; 14:71–86. CrossRefGoogle Scholar
  33. Cruz-Ortega, R., Anaya, A.L., Hernández, B.E., Laguna G. Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita peppo. J Chem Ecol 1998; 24: 2039–2057. CrossRefGoogle Scholar
  34. Del Amo, S., Anaya, A.L. Effect of some sesquiterpenic lactones on the growth of certain secondary tropical species. J Chem Ecol 1978; 4:305–313. CrossRefGoogle Scholar
  35. Doi, F., Ohara, T., Ogamino, T., Sugai, T., Higashinakasu, K., Yamada, K., Shigemori, H., Hasegawa, K., Nishiyama, S. Plant-growth inhibitory activity of heliannuol derivatives. Phytochemistry 2004; 65:1405–1411. PubMedCrossRefGoogle Scholar
  36. Duke, S.O., Plant terpenoids as pesticides. In Keeler, R.F. and A.T. Tu (Eds.). Handbook of Natural Toxins. Vol. 6. Marcel Dekker, New York, 1991. Google Scholar
  37. Duke, S.O., Romagni, J.G., Dayan, F.E. Natural products as sources for new mechanisms of herbicidal action. Crop Prot 2000; 19:583–589. CrossRefGoogle Scholar
  38. Duke, S.O., Dayan, F.E., Rimando, A.M., Schrader, K.K., Aliotta, G., Oliva, A., Romagni, J.G. Chemicals from nature for weed management. Weed Sci 2002a; 50:138–151. Google Scholar
  39. Duke, S.O., Rimando, A,M., Baerson, S.R., Scheffler, B.E., Ota, E. Belz, R.G. Strategies for the use of natural products for weed management. J Pesticide Sci 2002b; 27:298–306. Google Scholar
  40. Duke, S.O., Scheffler, B.E., Dayan, F.E., Dyer, W.E. Genetic engineering crops for improved weed management traits. Crop Biotechnol. ACS Symp Ser 2002c; 829: 52–66. Google Scholar
  41. Duke, S.O., Baerson, S.R., Dayan, F.E., Rimando, A.M., Scheffler, B.E., Tellez, M.R., Wedge, D.E., Schrader, K.K., Akey, D.H., Arthur, F.H., De Lucca, A.J., Gibson, D.M., Harrison, H.F., Peterson, J.K., Gealy, D.R., Tworkoski, T., Wilson, C.L., Morris, J.B. Research on natural products for pest management. United States Department of Agriculture, Agricultural Research Service. Pest Manag Sci 2003; 59:708–717. PubMedCrossRefGoogle Scholar
  42. Einhellig, F.A. Interaction among allelochemicals and other stress factors of the plant environment. In: Allelochemicals, Role in Agriculture and Forestry,GR Waller ed., ACS Symposium Series, Vol. 330. American Chemical Society, Washington DC, USA 1987; pp. 343–357. Google Scholar
  43. Einhellig, F.A. The Physiology of Allelochemical Action: Clues and Views. In: Allelopathy. From Molecules to Ecosystems. Science Publishers, Reigosa, M.J. and Pedrol, N. eds. Inc. Enfield, NH, USA, 2002. Google Scholar
  44. Elakovich, S.D. Terpenoids as models for new agrochemicals. ACS 380. American Chemical Society, Washington, D.C. 1988; 250–261. Google Scholar
  45. Evenari, M. Germination inhibitors. Bot Rev 1949; 15:153–194. Google Scholar
  46. Fischer, N.H. The function of mono and sesquiterpenes as plant germination and growth regulators. In The Science of Allelopathy.Putnam, A.R. and Ch-Sh. Tang Eds. John Wiley & Sons. 1986; pp. 203–218. Google Scholar
  47. Fischer, N.H. Plant terpenoids as allelopathic agents. In: Ecological Chemistry and Biochemistry of Plant Terpenoids.Harborne, J.B. and F.A. Tomas-Barberan (Eds.). Proceedings of the Phytochemical Society of Europe. Clarendon Press-Oxford.: 1991; pp. 377–398. Google Scholar
  48. Fischer, N.H., Weidenhamer, J.D., Bradow, J.M. Dihydroparthenolide and other sesquiterpene lactones stimulate witchweed germination. Phytochemistry 1989; 28: 2315–2317. CrossRefGoogle Scholar
  49. Fischer, N.H., Weidenhamer, J.D., Riopel, J.L., Quijano, L., Menelaou, M.A. Stimulation of witchweed germination by sesquiterpene lactones: a structure-activity study. Phytochemistry 1990; 29:2479–2483. CrossRefGoogle Scholar
  50. Fischer, N.H., Williamson, G.B., Weidenhamer, J.D., Richardson, D.R. In search of allelopathy in the Florida scrub: The role of terpenoids. J Chem Ecol 1994; 20:1355–1380. CrossRefGoogle Scholar
  51. Galindo, J.C.G., Hernández, A, Dayan F.E., Macías, F.A., Duke, S.O. Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry 1999; 52:805–813. CrossRefGoogle Scholar
  52. Galindo, J.C.G., de Luque, A.P., Jorrin, J., Macias, F.A. SAR studies of sesquiterpene lactones as Orobanche cumana seed germination stimulants. J Agric Food Chem 2002; 50:1911–1917. PubMedCrossRefGoogle Scholar
  53. Gómez-Rodríguez, O, Zavaleta-Mejía, E., and González-Hernández, V.A. Livera-Muñoz M., and Cárdenas- Soriano, E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res 2003; 83:27–34. CrossRefGoogle Scholar
  54. Haig, T. Application of hyphenated chromatography-mass spectrometry techniques to plant allelopathy research. J Chem Ecol 2001; 27:2363–2396. PubMedCrossRefGoogle Scholar
  55. Hallmann, J. and Sikora, R.A. Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. Eurp J Plant Pathol 1996; 102:155–162. CrossRefGoogle Scholar
  56. Hallmann, J., Quadt-Hallmann, A., Rodriguez-Kabana, R., and Kloepper, J.W. Interactions between Meloidogyne incognitaand endophytic bacteria in cotton and cucumber. Soil Biol Biochem 1998; 30:925–937. CrossRefGoogle Scholar
  57. Harper, J.L. Population Biology of Plants. Academic Press, New York, 1977. Google Scholar
  58. Harrison, H.F., Peterson, J.K., Jackson, D.M., and Snook, M.E. Periderm resin glycoside contents of sweetpotato, Ipomoea batatas(L.) Lam. clones and their biological activity. Allelopathy J 2003; 12: 53–60. Google Scholar
  59. Hoffmann-Hergarten, S., Gulati, M.K., Sikora R.A. Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. J Plant Diseas Protect 1998; 105:349–358. Google Scholar
  60. Hyder, P.W., Fredrickson, E.L., Estell, R.E., Tellez, M., Gibbens, R.P. Distribution and concentration of total phenolics, condensed tannins, and nordihydroguaiaretic acid (NDGA) in creosotebush (Larrea tridentata). Biochem Systemat Ecol 2002; 30: 905–912. CrossRefGoogle Scholar
  61. Inderjit. Plant phenolics in allelopathy. Bot Rev 1996; 62:186–202. Google Scholar
  62. Inderjit and Dakshini, K.M.M. Allelopathic potential of the phenolics from the roots of Pluchea lanceolata.Physiol Plant 1994; 92:571–576. CrossRefGoogle Scholar
  63. Inderjit and del Moral, R. Is separating resource competition from allelopathy realistic? Bot Rev 1997; 63:221–230. Google Scholar
  64. Inderjit and Mallik, A.U. Effect of phenolic compounds on selected soil properties. Forest Ecol Manag 1997; 92:11–18. CrossRefGoogle Scholar
  65. Inderjit, Muramatsu, M., Nishimura, H. On the allelopathic potential of certain terpenoids, phenolics, and their mixtures, and their recovery from soil. Can J Bot 1997; 75: 888–891. CrossRefGoogle Scholar
  66. Inderjit, Keating, K.I. Allelopathy: Principles, procedures, processes, and promises for biological control. Adv Agron 1999; 67:141–232. CrossRefGoogle Scholar
  67. Inderjit and Duke, S.O. Ecophysiological aspects of allelopathy. Planta 2003; 217:529–539. PubMedCrossRefGoogle Scholar
  68. Jackson, D.M. and Peterson, J.K. Sublethal effects of resin glycosides from the periderm of sweetpotato storage roots on Plutella xylostella (Lepidoptera: Plutellidae). J Econom Entomol 2000; 93:388–393. CrossRefGoogle Scholar
  69. Jimenez-Osornio J.J., S.R. Gliessman. Allelopathic interference in a wild mustard (Brassica campestrisL.) and broccoli (Brassica oleraceaL. var. italica) intercrop agroecosystem. In: Allelochemicals, Role in Agriculture and Forestry, Waller G.R. ed. ACS Symp. Ser. 330. American Chemical Society, Washington DC, USA, 1987; pp. 262–274. Google Scholar
  70. John, J. and Narwal, S.S. Allelopathic plants. 9. Leucaena leucocephala (Lam.) de Wit. Allelopathy J 2003; 12:13–36. Google Scholar
  71. Keyes, W.J., Taylor, J.V., Apkarian, R.P., Lynn, D.G. Dancing together. Social controls in parasitic plant development. Plant Physiol 2001; 127:1508–1512. PubMedCrossRefGoogle Scholar
  72. Kloepper, J.W., Rodriguez-Kabana, R., Zehnder, G.W., Murphy, J.F., Sikora, E., Fernandez. C. Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas. Plant Pathol 1999; 28:21–26. CrossRefGoogle Scholar
  73. Langenheim, J. Higher plant terpenoids: A phytocentric overview of their ecological roles. J Chem Ecol 1994; 20:1223–1280. CrossRefGoogle Scholar
  74. Lehman, M.E., Blum, U. Evaluation of ferulic acid uptake as a measurement of allelochemical dose: Effective concentration. J Chem Ecol 1999; 25:2585–2600. CrossRefGoogle Scholar
  75. Macias, F.A., J.C.G. Galindo, G.M. Massanet. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry 1992; 31:1969–1977. CrossRefGoogle Scholar
  76. Macias, F.A., Galindo, J.C.G., Castellano, D, Velasco, R.F. Natural products as allelochemicals. 11. Sesquiterpene lactones with potential use as natural herbicide models (I): trans,trans-germacranolides. J Agric Food Chem 1999; 47:4407–4414. PubMedCrossRefGoogle Scholar
  77. Macias, F.A., Galindo, J.C.G., Castellano, D., Velasco, R. Sesquiterpene lactones with potential use as natural herbicide models. 2. Guaianolides. J Agric Food Chem 2002a; 48:5288–5296. CrossRefGoogle Scholar
  78. Macias, F.A., Torres, A., Galindo, J.L.G., Varela, R., Alvarez, J,A., Molinillo, J.M.G. Bioactive terpenoids from sunflower leaves cv. Peredovick (R). Phytochem 2002b; 61:687–692. CrossRefGoogle Scholar
  79. Mankau, R. Reduction of root-knot disease with organic amendments under semifield conditions. Plant Disease Reporter 1968; 52:315–319. Google Scholar
  80. Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek Internat. J Gen Molec Microbiol 2002; 81:557–564. Google Scholar
  81. Morris, J.B., Walker, J.T. Non-traditional legumes as potential soil amendments for nematode control. J Nematol 2002; 34:358–361. PubMedGoogle Scholar
  82. Muscolo, A., Panuccio, M.R., Sidari, M. The effect of phenols on respiratory enzymes in seed germination - Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regul. 2001; 35:31–35. CrossRefGoogle Scholar
  83. Nagabhushana, G.G., Worsham, A.D., Yenish, J.P. Allelopathic cover crops to reduce herbicide use in sustainable agricultural systems. Allelopathy J 2001; 8:133–146. Google Scholar
  84. Nava-Rodriguez, V. Hernandez-Bautista, B.E., Cruz-Ortega, R., Anaya, A.L. Allelopathic potential of beans (Phaseolus spp.), other crops, and weeds from Mexico. Allelopathy J Google Scholar
  85. Neori, A., Reddy, K.R., Ciskova-Koncalova, H., Agami, M. Bioactive chemicals and biological-biochemical activities and their functions in rhizospheres of wetland plants. Bot Rev 2000; 66:350–378. Google Scholar
  86. Ngouajio, M., McGiffen, M.E. Going organic changes weed population dynamics. Hort Technol 2002; 12:590–596. Google Scholar
  87. Nilsson, M.C., Gallet, C., Wallstedt, A. Temporal variability of phenolics and batatasin-III in Empetrum hermaphroditum leaves over an eight-year period: interpretations of ecological functions. Oikos 1998; 81:6–16. Google Scholar
  88. Ohno, T., Doolan, K., Zibilske, L.M., Liebman, M., Gallandt, E., Berube, C. Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agricult Ecosyst Environm 2000; 78:187–192. CrossRefGoogle Scholar
  89. Pereda-Miranda, R., R. Mata, A.L. Anaya, J.M. Pezzuto, D.B.M. Wickramaratne, A.D. Kinghorn. Tricolorin A, major phytogrowth-inhibitor from Ipomoea tricolor. J Natural Products 1993; 56:571–582. CrossRefGoogle Scholar
  90. Pérez de Luque, A., Galindo, J.C.G., Macías, F.A., Jorrin, J. Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry 2000, 2000; 53:45–50. PubMedCrossRefGoogle Scholar
  91. Persmark, L., H.B. Jansson. Nematophagous fungi in the rhizosphere of agricultural crops. Federation of European Microbiological Societies. Microbiology Ecology 1997; 22:303–312. Google Scholar
  92. Persmark, L., B. Nordbring-Hertz. Conidial trap formation of nematode-trapping fungi in soil and soil extracts. Federation of European Microbiological Societies. Microbiology Ecology 1997; 22:313–323. Google Scholar
  93. Peterson, J.K., Harrison, H.F. Sweet-potato allelopathic substance inhibits growth of purple nutsedge (Cyperusrotundus). Weed Technol 1995; 9:277–280. Google Scholar
  94. Picman, A.K. Biological activities of sesquiterpene lactones. Biochem Syst Ecol 1986; 4: 255–281. CrossRefGoogle Scholar
  95. Picman, J., Picman, A.K. Autotoxicity in Parthenium hysterophorus and its possible role in control of germination. Biochem Syst Ecol 1984; 12:287–292. CrossRefGoogle Scholar
  96. Politycka, B. Phenolics and the activities of phenylalanine ammonia-lyase, phenol-beta-glucosyltransferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiol Plant 1998; 20:405–410. Google Scholar
  97. Politycka, B. Ethylene-dependent activity of phenylalanine ammonia-lyase and lignin formation in cucumber roots exposed to phenolic allelochemicals. Acta Soc Bot Pol 1999; 68:123–127. Google Scholar
  98. Postma J., Montanari M., Van den Boogert P.H.J.F. Microbial enrichment to enhance the disease suppressive activity of compost. European J Soil Biol 2003; 39:157–163. CrossRefGoogle Scholar
  99. Putnam, A.R. Allelochemicals from plants as herbicides. Weed Technol 1988; 2:510–518. Google Scholar
  100. Pyrowolakis, A., Westphal, A., Sikora, R.A,. Becker, J.O. Identification of root-knot nematode suppressive soils. Appl Soil Ecol 2002; 19:51–56. CrossRefGoogle Scholar
  101. Qiu, J., Hallmann, J., Kokalis-Burelle, N., Weaver, D.B., Rodriguez-Kabana, R., Tuzan, S. Activity and Differential Induction of Chitinase Isozymes in Soybean Cultivars Resistant or Susceptible to Root-knot Nematodes. J Nematology 1997; 29:523–530. Google Scholar
  102. Randhir, R., Lin, Y.T., Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 2004; 39:637–646. CrossRefGoogle Scholar
  103. Reigosa, M.J., Souto, X.C., Gonzalez, L. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul 1999; 28:83–88. CrossRefGoogle Scholar
  104. Reitz M., Rudolph K., Schroder I., Hoffmann-Hergarten S., Hallmann J., Sikora R.A. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.Appl Environ Microbiol 2000; 66(8):3515–3518. CrossRefGoogle Scholar
  105. Rice, E.L. Allelopathy. 2nd. Ed., Academic Press, Inc. London 1984. Google Scholar
  106. Rich, J.R., Rahi, G.S. Suppression of Meloidogyne javanicaand M. incognita on tomato with ground seed of castor, Crotalaria, hairy indigo, and wheat. Nematropica 1995; 25:159–164. Google Scholar
  107. Ridenour, W.M., Callaway, R.M. The relative importance of allelopathy in interference: the effect of an invasive weed on a native bunchgrass. Oecologia 2001; 126:444–450. CrossRefGoogle Scholar
  108. Rodríguez-Kábana, R. Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematology 1986; 18:129–134. Google Scholar
  109. Rodríguez-Kábana, R., Kloepper, J.W. Cropping systems and the enhancement of microbial activities antagonistic to nematodes. Nematropica 1998; 28:144. Google Scholar
  110. Romagni, J.G., Meazza, G., Nanayakkara, N.P.D., Dayan, F.E. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. FEBS Letters 2000; 480:301–305. PubMedCrossRefGoogle Scholar
  111. Romero-Romero Teresa, Anaya, A.L., Cruz-Ortega, R. Screening the effects of allelochemical stress produced by some plants on cytoplasmic protein synthesis pattern of crop plants. J Chem Ecol 2002; 28:617–629. PubMedCrossRefGoogle Scholar
  112. Roshchina, V.V. Molecular-cellular mechanisms in pollen allelopathy. Allelopathy J 2001; 8:11–28. Google Scholar
  113. Sashida, Y., Nakata, H. Shimomura, H. and Kagaya, M. Sesquiterpene lactones from Pyrethrum flowers. Phytochemistry 1983; 22:1219–1222. CrossRefGoogle Scholar
  114. Seigler, D.S. Chemistry and mechanisms of allelopathic interactions. Agronomy J 1996; 88:876–885. CrossRefGoogle Scholar
  115. Singh, H.P., Batish, D.R., Kaur, S., Kohli, R.K. Phytotoxic interference of Ageratum conyzoides with wheat (Triticum aestivum). J Agron Crop Sci 2003a; 189:341–346. CrossRefGoogle Scholar
  116. Singh, H.P., D.R. Batish, R.K. Kohli. Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Crit Rev Plant Sc 2003b; 22:239–311. Google Scholar
  117. Singh, H.P., Batish, D.R., Pandher, J.K., Kohli, R.K. Assessment of allelopathic properties of Parthenium hysterophorus residues. Agric Ecosyst Environ 2003c; 95:537–541. CrossRefGoogle Scholar
  118. Soler-Serratosa, A., Kokalis-Burelle, N., Rodriguez-Kabana, R., Weaver, C.F., King P.S. Allelochemicals for control of plant parasitic nematodes. Nematropica 1996; 26:57–71. Google Scholar
  119. Souto, C., Pellissier, F., Chiapusio, G. Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. J Chem Ecol 2000; 26:2015–2023. CrossRefGoogle Scholar
  120. Spencer, G.F., R.B. Wolf, D. Weisleder. Germination and growth inhibitory sesquiterpenes from Iva Axillaris seeds. J Nat Prod 1984; 47:730–732. CrossRefGoogle Scholar
  121. Staman, K, Blum, U., Louws, F., Robertson, D. Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol 2001; 27:807–829. CrossRefGoogle Scholar
  122. Stanislaus, M.A., Cheng, C.L. Genetically engineered self-destruction: an alternative to herbicides for cover crop systems. Weed Sci 2002; 50:794–801. Google Scholar
  123. Stevens, K.L., G.B. Merrill. Sesquiterpene lactones and allelochemicals from Centaurea species. In: The Chemistry of Allelopathy: Biochemical Interactions Among Plants. Thompson, A.C. ed. ACS Symp. Ser. 268. American Chemical Society. Washington, D.C., 1985. Google Scholar
  124. Sturz, A.V., Christie, B.R., Nowak, J. Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 2000; 19:1–30. Google Scholar
  125. Sturz, A.V., Kimpinski, J. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 2004; 262:241–249. CrossRefGoogle Scholar
  126. Toxicity of Pesticides. Pesticide Education Program in Penn State’s College of Agricultural Sciences. The Pennsylvania State University. 2004 Google Scholar
  127. Upadhyay, R.K., Mukerji, K.G., Rajak, R.L. Integrated Pest Management. In: IPM System in Agriculture. Vol. I. Principles and Perspectives.Upadhyaya R.K., Mukerji K.G., Rajak R.L., eds. Aditya Books Pvt. Ltd., New Delhi, 1996; pp. 1–23. Google Scholar
  128. Van Den Boogert, P.H.J.F., Velvis, H., Ettema, C.H., Bouwman, L.A. The role of organic matter in the population dynamics of the endoparasitic nematophagus fungus Drechmeria coniospora in microcosms. Nematologica 1994; 40:249–257. CrossRefGoogle Scholar
  129. Vargas-Ayala, R., Rodriguez-Kabana, R., Morgan-Jones, G., McInroy, J.A., Kloepper J.W. Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biol Control 2000; 17:11–22. CrossRefGoogle Scholar
  130. Vargas-Ayala, R., Rodriguez-Kabana, R. Bioremediative management of soybean nematode population densities in crop rotations with velvetbean, cowpea, and winter crops. Nematropica 2001; 31:37–46. Google Scholar
  131. Vokou, D., Douvli, P., Blionis, G.J., Halley, J.M. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J Chem Ecol 2003; 29: 2281–2301. PubMedCrossRefGoogle Scholar
  132. Waller G.R., C.H. Chou. Phytochemical Ecology: Allelochemicals, Mycotoxins, and Insect Pheromones and Allomones. Institute of Botany. Academia Sinica. Taipei, Taiwan 1989. Google Scholar
  133. Waller, G.R. Introduction. In: Recent Advances in Allelopathy. Macías, F.A., Galindo, J.C.G., Molinillo, J.M.G., and Cutler, H.G. eds. Vol. I A science for the Future. International Allelopathy Society and Servicio de Publicaciones de la Universidad de Cádiz, España 1999 Google Scholar
  134. Waller, G.R., M.C. Feng, Y. Fujii. Biochemical analysis of allelopathic compounds: plants, microorganisms, and soil secondary metabolites. In: Principles and Practices in Plant Ecology : Allelochemical interactions,Inderjit, K.M.M., Dakshini and Foy C.L. eds. CRC Press, Boca Raton, FL, USA. 1999, pp. 75–98. Google Scholar
  135. Wang, K.H., Sipes, B.S., Schmitt, D.P. Crotalaria as a cover crop for nematode management: A review. Nematropica 2002; 32 (1):35–57. Google Scholar
  136. Weidenhamer J.D. Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 1996; 88:866–875. CrossRefGoogle Scholar
  137. Weller, S.C., Bressan, R.A., Goldsbrough, P.B., Fredenburg, T.B., Hasegawa, P.M. The effect of genomics on weed management in the 21st century. Weed Sci 2001; 49: 282–289. Google Scholar
  138. Weller, D.M., J.M. Raaijmakers, B.B.M. Gardener, L.S. Thomashow. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopath 2002; 40:309–348. CrossRefGoogle Scholar
  139. Weston L.A. Utilization of allelopathy for weed management in agroecosystems. Agron J 1996; 88:860–866. CrossRefGoogle Scholar
  140. Weston, L.A., Duke, S.O. Weed and crop allelopathy. Crit Rev Plant Sci 2003; 22:367–389. Google Scholar
  141. Wigchert, S.C.M., Zwanenburg, B. A critical account on the inception of Striga seed germination. J Agric Food Chem 1999; 47:1320–1325. PubMedCrossRefGoogle Scholar
  142. Yenish, J.P., Worsham, A.D., York, A.C. Cover crops for herbicide replacement in no-tillage corn (Zea mays).Weed Technol 1996; 10:815–821. Google Scholar
  143. Yin, B; Scupham, AJ; Menge, JA; Borneman, J. Identifying microorganisms which fill a niche similar to that of the pathogen: a new investigative approach for discovering biological control organisms. Plant Soil 2004; 259:19–27. CrossRefGoogle Scholar
  144. Yu, J.Q., Matsui, Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 1997; 23: 817–827. CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Laboratorio de Alelopatía, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.

Personalised recommendations