Skip to main content

Trienoic fatty acids and temperature tolerance of higher plants

  • Chapter
Abiotic stress tolerance in plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IPCC (2001) IPCC Third Assessment Report - Climate Change 2001. http://www.ipcc.ch/

  2. Newman, J.E. (1980). Climate change impacts on the growing season of the North American corn belt. Biometeorology7, 128-142.

    Google Scholar 

  3. Rosenzweig, C. (1985). Potential CO2-induced climate effects on North American wheat-producing regions. Climate Change 7, 367-389.

    Article  Google Scholar 

  4. Smit, B., Ludlow, L. and Brklacich, M. (1988). Implication of a global climate warming for agriculture: a review and appraisal. J. Environ. Quart. 17, 519-527.

    Article  Google Scholar 

  5. Rosenzweig, C. and Parry, M.L. (1994). Potential impact of climate change on world food supply. Nature 367, 133-138.

    Article  Google Scholar 

  6. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science 287, 476-479.

    Article  CAS  PubMed  Google Scholar 

  7. Iba, K. (2002). Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53, 225-245.

    CAS  Google Scholar 

  8. Quinn, P.J. and Williams, W.P. (1993). The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737, 223-266.

    Google Scholar 

  9. Matsuda, O., Sakamoto, H., Hashimoto, T. and Iba, K. (2005). A temperature-sensitive mechanism that regulates post-translational stability of a plastidial w-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J. Biol. Chem. 280, 3597-3604.

    Article  CAS  PubMed  Google Scholar 

  10. Sharkey, T.D. (2000). Some like it hot. Science 287, 435-437.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R. and Quinn, P.J. (1986). Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta 849, 131-140.

    Article  CAS  Google Scholar 

  12. Shimada, T., Wakita, Y., Otani, M. and Iba, K. (2000). Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal w-3 fatty acid desaturase gene (NtFAD3). Plant Biotech. 17, 43-48.

    CAS  Google Scholar 

  13. Hugly, S. and Somerville, C. (1992). A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol. 99, 197-202.

    Article  CAS  PubMed  Google Scholar 

  14. Miquel, M., James, D.Jr., Dooner, H. and Browse, J. (1993). Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc. Natl. Acad. Sci. USA 90, 6208-6212.

    Article  CAS  PubMed  Google Scholar 

  15. Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C. (1992). Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258, 1353-1354.

    Article  CAS  PubMed  Google Scholar 

  16. Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S. and Somerville, C. (1993). A gene encoding a chloroplast w-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J. Biol. Chem. 268, 24099-24105.

    CAS  PubMed  Google Scholar 

  17. Gibson, S., Arondel, V., Iba, K. and Somerville, C. (1994). Cloning of a temperature-regulated gene encoding a chloroplast w-3 desaturase from Arabidopsis thaliana. Plant Physiol. 106, 1615-1621.

    Article  CAS  PubMed  Google Scholar 

  18. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994). Genetic enhancement of cold tolerance by expression of a gene for chloroplast w-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601-605.

    CAS  PubMed  Google Scholar 

  19. Hamada, T., Kodama, H., Takeshita, K., Utsumi, H. and Iba, K. (1998). Characterization of transgenic tobacco with an increased w-linolenic acid level. Plant Physiol. 118, 591-598.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J.H., Hubel, A. and Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8, 603-612.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

IBA, K. (2006). Trienoic fatty acids and temperature tolerance of higher plants. In: RAI, A.K., TAKABE, T. (eds) Abiotic stress tolerance in plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4389-9_4

Download citation

Publish with us

Policies and ethics