Technology development and climate change as drivers of future agricultural land use

  • Frank Ewert
  • Mark Rounsevell
  • Isabelle Reginster
  • Marc Metzger
  • Rik Leemans
Part of the Environment & policy book series (ENPO, volume 46)


Agricultural Land Technology Development Common Agricultural Policy Future Land A1FI Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor, J.S. (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, Vol. 73 (1), pp. 1-34.CrossRefGoogle Scholar
  2. Amthor, J.S. and R.S. Loomis (1996) Integrating knowledge of crop responses to elevated CO2 and temperature with mechanistic simulation models: model components and research needs. In: G.W. Koch and H.A. Mooney (Eds) Carbon Dioxide and Terrestrial Ecosystems. San Diego, USA, Academic Press, pp. 317-345.CrossRefGoogle Scholar
  3. Austin, R.B. (1999) Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Science, Vol. 39 (6), pp. 1604-1610.Google Scholar
  4. Bender, J., U. Hertstein and C.R. Black (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‘ESPACE-wheat’ results. European Journal of Agronomy, Vol. 10 (3-4), pp. 185-195.CrossRefGoogle Scholar
  5. Boote, K.J., N.B. Pickering, and L.H. Allen, Jr. (1997) Plant modeling: advances and gaps in our capability to predict future crop growth and yield in response to global climate change. In: L.H. Allen Jr., et al. (Eds). Madison; USA, American Society of Agronomy, pp. 179-228.Google Scholar
  6. Borlaug, N.E. (2000) Ending world hunger. the promise of biotechnology and the threat of antiscience zealotry. Plant Physiology, Vol. 124 (2), pp. 487-490.CrossRefGoogle Scholar
  7. Calderini, D.F. and G.A. Slafer (1998) Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, Vol. 57 (3), pp. 335-347.CrossRefGoogle Scholar
  8. Cassman, K.G. (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. PNAS, Vol. 96 (11), pp. 5952-5959.CrossRefGoogle Scholar
  9. Downing, T.E., P.A. Harrison R.E. Butterfield and K.G. Lonsdale (2000) Climate Change, Climatic Variability and Agriculture in Europe: An Integrated Assessment. Environmental Change Unit, University of Oxford, Oxford.Google Scholar
  10. Dyson, T. (1999) World food trends and prospects to 2025. PNAS, Vol. 96 (11), pp. 5929-5936.CrossRefGoogle Scholar
  11. Eurostat (2000) Regio Database: User’s Guide. Commission des Communautés Européennes, Eurostat, Luxembourg.Google Scholar
  12. Evans, L.T. (1997) Adapting and improving crops: the endless task. Philosophical Transactions Royal Society London: Biological Sciences, Vol. 352 (1356), pp. 901-906.CrossRefGoogle Scholar
  13. Evans, L.T. and R.A. Fischer (1999) Yield potential: its definition, measurement and significance. Crop Science, Vol. 39 (6), pp. 1544-1551.CrossRefGoogle Scholar
  14. Ewert, F. (2004) Modelling plant responses to elevated CO2: how important is leaf area index? Annals of Botany, Vol. 93 (6), pp. 619-627.CrossRefGoogle Scholar
  15. Ewert, F., D. Rodriguez, P. Jamieson, M.A. Semenov, R.A.C. Mitchell, J. Goudriaan, J.R. Porter, B.A. Kimball, P.J. Pinter, Jr., R. Manderscheid, H.J. Weigel, A. Fangmeier, E. Fereres and F. Villalobos (2002) Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems and Environment, Vol. 93 (1-3), pp. 249-266.CrossRefGoogle Scholar
  16. Ewert, F., M.D.A. Rounsevell, I. Reginster, M. Metzger and R. Leemans (2005) Future scenarios of agricultural land use in Europe. II: Estimating changes in productivity. Agriculture, Ecosystems & Environment, Vol. 107 (2-3), pp. 101-116.CrossRefGoogle Scholar
  17. FAO (2003) Food and Agriculture Organization. Internet database:, Food and Agriculture Organization, Rome.
  18. Fischer, G., H. van Velthuizen, M. Shah and F. Nachtergaele (2002) Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results. International Institute for Applied Systems Analysis, Food and Agriculture Organization of the United Nations.Google Scholar
  19. Goudriaan, J. and J.C. Zadoks (1995) Global climate change: modelling the potential response of agro-ecosystems with special reference to crop protection. Environmental Pollution, Vol. 87 (2), pp. 215-224.CrossRefGoogle Scholar
  20. Guo, L.B. and R.M. Gifford (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology, Vol. 8 (4), pp. 345-360.CrossRefGoogle Scholar
  21. IMAGE-team (2001) The IMAGE 2.2 implementation of the SRES scenarios: A comprehensive analysis of emissions, climate change and impacts in the 21st century. National Institute of Public Health and Environment (RIVM), Bilthoven.Google Scholar
  22. Jones, J.W., J.W. Hansen, F.S. Royce and C.D. Messina (2000) Potential benefits of climate forecasting to agriculture. Agriculture, Ecosystems & Environment, Vol. 82 (1-3), pp. 169-184.CrossRefGoogle Scholar
  23. Kimball, B.A., K. Kobayashi and M. Bindi (2002) Responses of agricultural crops to free- air CO2 enrichment. Advances in Agronomy, Vol. 77, pp. 293-368.CrossRefGoogle Scholar
  24. Lambin, E.F., M.D.A. Rounsevell and H.J. Geist (2000)Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, Vol. 82 (1-3), pp. 321-331.CrossRefGoogle Scholar
  25. Loomis, R.S. and J.S. Amthor (1999)Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Science, Vol. 39 ( 6), pp. 1584-1596.Google Scholar
  26. Metzger, M.J., R.G.H. Bunce, R.H.G. Jongman, C.A. Mücher and J.W. Watkins (in press) A climatic stratifaction of the environment in Europe. Global Ecology and Biogeography, in press.Google Scholar
  27. Mitchell, T.D., T.R. Carter, P.D. Jones, M. Hulme and M. New (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100). Tijndall Centre for Climate Change Research, Working Paper 55.Google Scholar
  28. Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, and others (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  29. Oerke, E.C. and H.W. Dehne (1997) Global crop production and the efficacy of crop protection-current situation and future trends. European Journal of Plant Pathology, Vol. 103 (3), pp. 203-215.CrossRefGoogle Scholar
  30. Reilly, J., F. Tubiello, B. McCarl, D. Abler, R. Darwin, K. Fuglie, S. Hollinger, C. Izaurralde, S. Jagtap, J. Jones, L. Mearns, D. Ojima, E. Paul, K. Paustian, S. Riha, N. Rosenberg and C. Rosenzweig (2003) U.S. agriculture and climate change: new results. Climatic Change, Vol. 57 (1-2), pp. 43-69.CrossRefGoogle Scholar
  31. Reynolds, M.P., S. Rajaram and K.D. Sayre (1999) Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Science, Vol. 39 (6), pp. 1611-1621.CrossRefGoogle Scholar
  32. Rosenzweig, C. and M.L. Parry (1994) Potential impact of climate change on world food supply. Nature, Vol. 367, pp. 133-138.CrossRefGoogle Scholar
  33. Rounsevell, M.D.A., J.E. Annetts, E. Audsley, T. Mayr and I. Reginster (2003) Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture, Ecosystems & Environment, Vol. 95 (2-3 SU), pp. 465-479.CrossRefGoogle Scholar
  34. Rounsevell, M.D.A., I. Reginster , M.B. Araújo, T.R. Carter, N. Dendoncker, F. Ewert, J.I. House, S. Kankaanpää, R. Leemans, M.J. Metzger, C. Schmit, P. Smith and G. Tuck (in review) A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment.Google Scholar
  35. Rounsevell, M.D.A., F. Ewert, I. Reginster, R. Leemans and T. Carter (2005) Future scenarios of agricultural land use in Europe. Agriculture, Ecosystems & Environment, Vol. 107 (2-3), pp. 117-135.CrossRefGoogle Scholar
  36. Tubiello, F.N. and F. Ewert (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change.\European Journal of Agronomy, Vol. 18 (1-2), pp. 57-74.CrossRefGoogle Scholar
  37. van Ittersum, M.K., P.A. Leffelaar, H. van Keulen, M.J. Kropf, L. Bastiaans and J. Goudriaan (2003) On approaches and applications of the Wageningen crop models. European Journal of Agronomy. Vol. 18 (3-4), pp. 201-234.CrossRefGoogle Scholar
  38. van Oijen, M. and F. Ewert (1999) The effects of climatic variation in Europe on the yield response of spring wheat cv. Minaret to elevated CO2 and O3: an analysis of open- top chamber experiments by means of two crop growth simulation models. European Journal of Agronomy, Vol. 10 (3-4), pp. 249-264.CrossRefGoogle Scholar
  39. World Bank (2002) World Development Indicators 2002, http://www.

Copyright information

© Springer 2006

Authors and Affiliations

  • Frank Ewert
    • 1
  • Mark Rounsevell
    • 2
  • Isabelle Reginster
    • 3
  • Marc Metzger
    • 4
  • Rik Leemans
    • 5
  1. 1.Plant Production Systems Group, Department of Plant SciencesWageningen UniversityAKThe Netherlands
  2. 2.Département de GéographieUniversité Catholique de LouvainBelgium
  3. 3.Département de GéographieUniversité Catholique de LouvainBelgium
  4. 4.Department of Plant SciencesWageningen UniversityAKThe Netherlands
  5. 5.Department of Environmental SciencesWageningen URAAThe Netherlands

Personalised recommendations