Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 220)


By combining large-scale classical molecular dynamics simulations, the replica exchange method and ab initio calculations, we have studied how the incorporation of nitrogen and hafnium affects the physical and chemical properties of the silicon/silicon dioxide interface. This paper focuses on the determination of the structure of the SiO2/Si(100) interface and on the changes induced on its microscopic characteristics by nitrogen introduced at different concentrations (in the range from 1% to 14%). Characteristic Si- and Ocentered defects are observed and in particular N-centered defects—also unforeseen ones. Additional defects emerging after hydrogenation are also considered. The effects of silicon replacement with hafnium atoms at various levels in the interface region are also studied, both in the stoichiometric and substoichiometric oxide.


Silicon Atom Defect Configuration Nitrogen Profile Hafnium Atom REMD Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Robertson, Europ. Phys. J. Appl. Phys. 28, 265–291 (2004).Google Scholar
  2. 2.
    A. Pasquarello and A. M. Stoneham, J. Phys.: Condens. Matter 17, V1-V5 (2005).CrossRefGoogle Scholar
  3. 3.
    A. M. Stoneham, J. L. Gavartin and A. L. Shluger, J. Phys.: Condens. Matter S2027–S2049 and references therein.Google Scholar
  4. 4.
    D. Fischer, A. Curioni, S.R. Billeter and W. Andreoni, preprint, submitted for publication.Google Scholar
  5. 5.
    Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).CrossRefGoogle Scholar
  6. 6.
    S.R. Billeter, A. Curioni, D. Fischer, and W. Andreoni, preprint, submitted for publication.Google Scholar
  7. 7.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  8. 8.
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).Google Scholar
  9. 9.
    These calculations used the CPMD code: CPMD Copyright IBM Corp 1990–2005; Copyright MPI für Festkörperforschung Stuttgart 1997–2001; see Scholar
  10. 10.
    D. Fischer, A. Curioni, S.R. Billeter, W. Andreoni, Phys. Rev. Lett. 92, 236405 (2004).Google Scholar
  11. 11.
    C.A. Pignedoli, A. Curioni and W. Andreoni, preprint, submitted for publication.Google Scholar
  12. 12.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988).CrossRefGoogle Scholar
  13. 13.
    F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994); F.P. Tanguey and S. Scandolo, J. Chem. Phys. 117, 8898 (2002).Google Scholar
  14. 14.
    A. Pasquarello, M. S. Hybertsen, and R. Car, Phys. Rev. B 53, 10942 (1996); R. Buczko, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 84, 943 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Bongiorno and A. Pasquarello, Appl. Phys. Lett. 83, 1417 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Miyazaki, H. Nishimura, M. Fukuda, L. Ley and J. Ristein, Appl. Surf. Sci. 113/114, 585 (1997).CrossRefGoogle Scholar
  17. 17.
    I. Jimenez and J. L. Sacedon, Surf. Sci. 482–485, 272 (2001).Google Scholar
  18. 18.
    F. Rochet, Ch. Poncey, G. Dufour, H. Roulet, C. Guillot, and F. Sirotti, J. Non-Cryst Solids 216, 148 (1997).CrossRefGoogle Scholar
  19. 19.
    J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, M. Oshima, N. Hirashita, M. Nywa, and A. Toriumi, Phys. Rev. B 63, 205310 (2001).Google Scholar
  20. 20.
    K.T. Queeney, N. Herbots, J. M. Shaw, V. Atluri, and Y. J. Chabal, Appl. Phys. Lett. 84, 493 (2004).CrossRefGoogle Scholar
  21. 21.
    F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).Google Scholar
  22. 22.
    K.T. Queeney, M.K. Weldon, J.P. Chang, Y.J. Chabal, A.B. Gurevich, J. Sapjeta, and R.L. Opila, J. Appl. Phys. 87, 1322 (2000).CrossRefGoogle Scholar
  23. 23.
    K. Kimura and K. Nakajima, Appl. Surf. Sci. 216, 283 (2003).CrossRefGoogle Scholar
  24. 24.
    N. Ikarashi, K. Watanabe, and Y. Miyamoto, Phys. Rev. B 62, 15989 (2001).Google Scholar
  25. 25.
    I. Takahashi, T. Kada, K. Inoue, A. Kitahara, H. Shimazu, N. Tanaka, H. Terauchi, S. Doi, K. Nomura, N. Awaji, and S. Komiya, Jpn. J. Appl. Phys., Part 1, 42, 7493 (2003); N. Awaji, Y. Sugita, Y. Horii, and I. Takahashi, Appl. Phys. Lett. 74, 2669 (1999).Google Scholar
  26. 26.
    Y. Sugita, S. Watanabe, N. Awaji, and S. Komiya, Appl. Surf. Sci. 100/101, 268 (1996).CrossRefGoogle Scholar
  27. 27.
    Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).CrossRefGoogle Scholar
  28. 28.
    L. G. Gosset, J. J. Ganem, H. J. von Bardeleben, S. Rigo, I. Trimaille, J. L. Cantin, T. Akermark, and I. C. Vickridge, J. Appl. Phys. 85, 3661 (1999); K. Kushida-Abdelghafar, K. Watanabe, T. Kikawa, Y. Kamigaki, and J. Ushio, J. Appl. Phys. 92, 2475 (2002).CrossRefGoogle Scholar
  29. 29.
    A.A. Demkov, R. Liu, X. Zhang, and H. Loechelt, J. Vac. Sci. Technol. B18, 2388 (2000); S. Jeong and A. Oshiyama, Phys. Rev. Lett. 86, 3574 (2001); I. Takahashi, T. Kada, K. Inoue, A. Kitahara, H. Shimazu, N. Tanaka, H. Terauchi, S. Doi, K. Nomura, N. Awaji, and S. Komiya, Jpn. J. Appl. Phys. 42, 7493 (2003)CrossRefGoogle Scholar
  30. 30.
    G. F. Cerofolini, A.P. Caricato, L. Meda, N. Re and A. Sgamellotti, Phys. Rev. B61, 14157 (2000).Google Scholar
  31. 31.
    D. Fischer, A. Curioni, S.R. Billeter, and W. Andreoni, preprint, submitted for publication.Google Scholar
  32. 32.
    S. Fujieda, Y. Miura, M. Saitoh, E. Hagesawa, S. Koyama, and K. Ando, App. Phys. Lett. 82, 3677 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Kawamoto, J. Jameson, P. Griffin, K.J. Cho, and R. Dutton, IEEE Electron. Dev. Lett. 22, 14 (2001).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 1
    • 1
    • 1
    • 1
  1. 1.IBM ResearchZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations