Skip to main content

Angiogenesis: An Overview

  • Chapter
New Frontiers in Angiogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter J. Treatise on the blood, inflammation and gunshot wounds. Philadelphia, Thomas Bradford, 1794.

    Google Scholar 

  2. Egginton S. Temperature and angiogenesis: the possible role of mechanical factors in capillary growth. Comp Biochem Physiol. A Mol Integr Physiol. 2002, 132 (4): 773-787.

    PubMed  Google Scholar 

  3. Folkman J. Successful treatment of an angiogenic disease. N Engl J Med. 1989, 320 (18): 1211-1212.

    PubMed  CAS  Google Scholar 

  4. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003, 9 (6): 653-660.

    PubMed  CAS  Google Scholar 

  5. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JA, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998, 91: 3527-3561.

    PubMed  CAS  Google Scholar 

  6. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86 (3): 353-364.

    PubMed  CAS  Google Scholar 

  7. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996, 32 (4): 687-698.

    PubMed  CAS  Google Scholar 

  8. Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE, Ellis LM. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J. 2001, 15 (7): 1239-1241.

    PubMed  CAS  Google Scholar 

  9. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003, 9 (6): 685-693.

    PubMed  CAS  Google Scholar 

  10. Silvakumar B, Harry LE, Paleolog EM. Modulating angiogenesis: more vs less. JAMA 2004, 292: 972-977.

    Google Scholar 

  11. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919, 52: 409-415.

    PubMed  CAS  Google Scholar 

  12. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003, 9 (6): 677-684.

    PubMed  CAS  Google Scholar 

  13. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001, 292 (5516): 464-468.

    PubMed  CAS  Google Scholar 

  14. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983, 221 (4617): 1283-1285.

    PubMed  CAS  Google Scholar 

  15. Kourembanas S, Hannan RL, Faller DV. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990, 86 (2): 670-674.

    PubMed  CAS  Google Scholar 

  16. Pichiule P, Chavez JC, LaManna JC. Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem. 2004, 279 (13): 12171-12180.

    PubMed  CAS  Google Scholar 

  17. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS.Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004, 6 (5): 485-495.

    PubMed  CAS  Google Scholar 

  18. Risau W. Mechanisms of angiogenesis. Nature. 1997, 386 (6626): 671-674.

    PubMed  CAS  Google Scholar 

  19. Reynolds LP, Redmer DA. Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. J Anim Sci. 1998, 76 (6): 1671-1681.

    PubMed  CAS  Google Scholar 

  20. Vacca A, Ribatti D, Iurlaro M, Albini A, Minischetti M, Bussolino F, Pellegrino A, Ria R, Rusnati M, Presta M, Vincenti V, Persico MG, Dammacco F. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int J Clin Lab Res. 1998, 28 (1): 55-68.

    PubMed  CAS  Google Scholar 

  21. Norrby K. Mast cells and angiogenesis. APMIS. 2002, 110 (5): 355-371.

    PubMed  CAS  Google Scholar 

  22. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996, 2 (9): 992-997.

    PubMed  CAS  Google Scholar 

  23. Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M. Analysis of the role of chemokines in angiogenesis. J Immunol Methods. 2003, 273 (1-2): 83-101.

    PubMed  CAS  Google Scholar 

  24. Dermond O, Ruegg C. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resist Updat. 2001, 4 (5): 314-321.

    PubMed  CAS  Google Scholar 

  25. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001, 11: 293-299.

    PubMed  CAS  Google Scholar 

  26. Bikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci. 2002, 23 (12): 576-582.

    PubMed  CAS  Google Scholar 

  27. Saharinen P, Petrova TV. Molecular regulation of lymphangiogenesis. Ann N Y Acad Sci. 2004, 1014: 76-87.

    PubMed  CAS  Google Scholar 

  28. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002, 515: 33-48.

    PubMed  CAS  Google Scholar 

  29. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000, 407: 242-248.

    PubMed  CAS  Google Scholar 

  30. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996, 380 (6573): 435-439.

    PubMed  CAS  Google Scholar 

  31. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998, 4 (3): 336-340.

    PubMed  CAS  Google Scholar 

  32. Larcher F, Murillas R, Bolontrade M, Conti C, Jorcano JL. VEGF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated turnover development. Oncogene. 1998, 17: 303-311.

    PubMed  CAS  Google Scholar 

  33. Thomas KS. Fibroblast Growth Factors. FASEB J. 1987, 1: 434-440.

    PubMed  CAS  Google Scholar 

  34. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C.Munoz-Chapuli R, Quesada Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol. 2000, 20 (6): 2260-2268.

    PubMed  CAS  Google Scholar 

  35. Munoz-Chapuli R, Quesada AR, Angel Medina M. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci. 2004, 61 (17): 2224-2243.

    PubMed  CAS  Google Scholar 

  36. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med. 2002, 8 (1): 27-34.

    PubMed  CAS  Google Scholar 

  37. Papetti M, Herman IN. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002, 282: C947-C970.

    PubMed  CAS  Google Scholar 

  38. Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004, 15 (6): 419-433.

    PubMed  CAS  Google Scholar 

  39. Vailhe B, Feige JJ. Thrombospondins as anti-angiogenic therapeutic agents.Curr Pharm Des. 2003, 9 (7): 583-588.

    PubMed  CAS  Google Scholar 

  40. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998, 93 (7): 1159-1170.

    PubMed  CAS  Google Scholar 

  41. Iruela-Arispe ML, Carpizo D, Luque A. ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Ann N Y Acad Sci. 2003, 995: 183-190.

    PubMed  CAS  Google Scholar 

  42. Brouty-Boye D, Zetter BR. Inhibition of cell motility by interferon. Science.1980, 208 (4443): 516-518.

    PubMed  CAS  Google Scholar 

  43. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA. 1995, 92 (10): 4562-4566.

    PubMed  CAS  Google Scholar 

  44. Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003, 114 (2): 171-180.

    PubMed  CAS  Google Scholar 

  45. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003, 9 (4): 407-415.

    PubMed  CAS  Google Scholar 

  46. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994, 79 (2): 315-328.

    PubMed  Google Scholar 

  47. Skovseth DK, Veuger MJ, Sorensen DR, De Angelis PM, Haraldsen G. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood. 2005, 105 (3): 1044-1051.

    PubMed  CAS  Google Scholar 

  48. Panka DJ, Mier JW. Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem. 2003, 278 (39): 37632-37636.

    PubMed  CAS  Google Scholar 

  49. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science. 2002, 295 (5552): 140-143.

    PubMed  CAS  Google Scholar 

  50. Rosenkilde MM, Schwartz TW. The chemokine system- a major regulator of angiogenesis in health and disease. APMIS. 2004, 112 (7-8): 481-495.

    PubMed  CAS  Google Scholar 

  51. Bernardini D, Nasulewicz A, Mazur A, Maier JAM. Magnesium and microvascular endothelial cells: a role in inflammation and angiogenesis. Frontiers Biosci. 2005, 10: 1177-1182.

    CAS  Google Scholar 

  52. Maier JAM, Malpuech-Brugère C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta-Molecular Basis of Disease. 2004, 1689: 13-21.

    CAS  Google Scholar 

  53. Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol. 2002, 282 (5): H1821-1827.

    PubMed  CAS  Google Scholar 

  54. Lu J, Jiang C. Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects. Nutr Cancer. 2001, 40 (1): 64-73.

    PubMed  CAS  Google Scholar 

  55. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999, 98 (2):147-157.

    PubMed  CAS  Google Scholar 

  56. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 2000, 95 (1):189-197.

    PubMed  CAS  Google Scholar 

  57. Zachary I, Gliki G. Signalling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001, 49 (3): 568-581.

    PubMed  CAS  Google Scholar 

  58. T. J. Wright, L. Leach, P. E. Shaw, P. Jones. Dynamics of Vascular Endothelial-cadherin and catenin localization by Vascular Endothelial Growth Factor-induced angiogenesis in human umbilical vein cells. Exp Cell Res. 2002, 280: 159-168.

    PubMed  CAS  Google Scholar 

  59. Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol. 2004, 49 (3): 203-220.

    PubMed  Google Scholar 

  60. Sato Y. Aminopeptidases and angiogenesis. Endothelium. 2003, 10 (6): 287-290.

    PubMed  CAS  Google Scholar 

  61. Bauvois B. Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene. 2004, 23 (2): 317-329.

    PubMed  CAS  Google Scholar 

  62. Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol. 1982, 94 (3): 511-520.

    PubMed  CAS  Google Scholar 

  63. Zimrin AB, Villeponteau B, Maciag T. Models of in vitro angiogenesis: endothelial cell differentiation on fibrin but not matrigel is transcriptionally dependent. Biochem Biophys Res Commun. 1995, 213 (2): 630-638.

    PubMed  CAS  Google Scholar 

  64. Jaye M, McConathy E, Drohan W, Tong B, Deuel T, and Maciag T. Modulation of thesis gene transcript during endothelial cell differentiation in vitro. Science. 1985, 228: 882-885.

    PubMed  CAS  Google Scholar 

  65. Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990, 265 (16): 9308-9313.

    PubMed  CAS  Google Scholar 

  66. Wong MK, Prudovsky I, Vary C, Booth C, Liaw L, Mousa S, Small D, Maciag T. A non-transmembrane form of Jagged-1 regulates the formation of matrix-dependent chord-like structures. Biochem Biophys Res Commun. 2000, 268 (3): 853-859.

    PubMed  CAS  Google Scholar 

  67. Dragoni I, Mariotti M, Consalez GG, Soria MR, Maier JAM. EDF-1, a novel gene product down-regulated in human endothelial cell differentiation. J Biol Chem. 1998, 273 (47): 31119-31124.

    PubMed  CAS  Google Scholar 

  68. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth.Cardiovasc Res. 2001, 49 (3): 507-521.

    PubMed  CAS  Google Scholar 

  69. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999, 5 (5): 495-502.

    PubMed  CAS  Google Scholar 

  70. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999, 13 (9): 1055-1066.

    CAS  Google Scholar 

  71. Gomez RA. Role of angiotensin in renal vascular development. Kidney Int Suppl. 1998, 67: S12-16.

    PubMed  CAS  Google Scholar 

  72. Fernandez B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R. Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res. 2000, 87 (3): 207-213.

    PubMed  CAS  Google Scholar 

  73. Bjarnegard M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, Takemoto M, Gustafsson E, Fassler R, Betsholtz C. Endothelium-specific ablation of PDGF-B leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development. 2004, 131 (8): 1847-1857.

    PubMed  CAS  Google Scholar 

  74. Thurston G. Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003, 314 (1): 61-68.

    PubMed  CAS  Google Scholar 

  75. Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005, 65 (3): 599-608.

    PubMed  CAS  Google Scholar 

  76. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998, 282 (5388): 468-471.

    PubMed  CAS  Google Scholar 

  77. Gendron RL, Adams LC, Paradis H. Tubedown-1, a novel acetyltransferase associated with blood vessel development. Dev Dyn. 2000, 218 (2): 300-315.

    PubMed  CAS  Google Scholar 

  78. Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis. 2003, 6 (1):1-14.

    PubMed  CAS  Google Scholar 

  79. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000, 275 (13): 9102-9105.

    PubMed  CAS  Google Scholar 

  80. Risau W. Differentiation of the endothelium. FASEB J. 1995, 9 (10): 926-933.

    PubMed  CAS  Google Scholar 

  81. Bloch W, Huggel K, Sasaki T, Grose R, Bugnon P, Addicks K, Timpl R, Werner S. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J. 2000, 14 (15): 2373-2376.

    PubMed  CAS  Google Scholar 

  82. Jaffe RB. Importance of angiogenesis in reproductive physiology. Semin Perinatol. 2000, 24 (1): 79-81.

    PubMed  CAS  Google Scholar 

  83. Reynolds LP, Grazul-Bilska AT, Redmer DA. Angiogenesis in the corpus luteum. Endocrine. 2000, 12 (1): 1-9.

    PubMed  CAS  Google Scholar 

  84. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999, 5 (10): 1135-1142.

    PubMed  CAS  Google Scholar 

  85. Varner JA, Brooks PC, Cheresh DA. The integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes Commun. 1995, 3 (4):367-374.

    PubMed  CAS  Google Scholar 

  86. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998, 101 (11): 2567-2578.

    PubMed  CAS  Google Scholar 

  87. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986, 315 (26): 1650-1659.

    Article  PubMed  CAS  Google Scholar 

  88. Bergers G, Benjamin LS Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003, 3: 401-410.

    PubMed  CAS  Google Scholar 

  89. Brown MJ, Giacca AJ The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58: 1408-1416.

    PubMed  CAS  Google Scholar 

  90. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 2004, 351 (3): 250-259.

    PubMed  CAS  Google Scholar 

  91. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000, 407 (6801): 249-257.

    PubMed  CAS  Google Scholar 

  92. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999, 284 (5422): 1994-1998.

    PubMed  CAS  Google Scholar 

  93. Paleolog EM. Angiogenesis in rheumatoid arthritis. Arthritis Res. 2002, 4 Suppl 3: S81-90.

    PubMed  Google Scholar 

  94. Wilkinson-Berka JL. Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr Pharm Des. 2004, 10 (27): 3331-3348.

    PubMed  CAS  Google Scholar 

  95. Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004, 53 (4): 1104-1110.

    PubMed  CAS  Google Scholar 

  96. Ensoli B, Sgadari C, Barillari G, Sirianni MC, Sturzl M, Monini P Biology of Kaposi's sarcoma. Eur J Cancer. 2001, 37 (10): 1251-1269.

    PubMed  CAS  Google Scholar 

  97. Nickoloff BJ, Mitra RS, Varani J, Dixit VM, Polverini PJ. Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am J Pathol. 1994, 144 (4): 820-828.

    PubMed  CAS  Google Scholar 

  98. Lip GY, Blann AD. Thrombogenesis, atherogenesis and angiogenesis in vascular disease: a new vascular triad. Ann Med. 2004, 36 (2): 119-125.

    PubMed  CAS  Google Scholar 

  99. Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002, 99 (16): 10730-10735.

    PubMed  CAS  Google Scholar 

  100. Barcia C, Emborg ME, Hirsch EC, Herrero MT. Blood vessels and parkinsonism. Front Biosci. 2004, 9: 277-282.

    PubMed  CAS  Google Scholar 

  101. Vagnucci AH Jr, Li WW. Alzheimer's disease and angiogenesis. Lancet. 2003, 361(9357): 605-608.

    PubMed  CAS  Google Scholar 

  102. Fam NP, Verma S, Kutryk M, Stewart DJ. Clinician guide to angiogenesis. Circulation. 2003, 108 (21): 2613-2618.

    PubMed  Google Scholar 

  103. Kim JS, Kim JM, Jung HC, Song IS. Helicobacter pylori down-regulates the receptors of vascular endothelial growth factor and angiopoietin in vascular endothelial cells: implications in the impairment of gastric ulcer healing. Dig Dis Sci. 2004, 49 (5): 778-786.

    PubMed  CAS  Google Scholar 

  104. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001, 15(10): 1798-1800.

    PubMed  CAS  Google Scholar 

  105. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003, 89 (3): 529-538.

    PubMed  CAS  Google Scholar 

  106. Ravindranath MH, Muthugounder S, Presser N, Viswanathan S. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol. 2004, 546: 121-165.

    PubMed  Google Scholar 

  107. Harris ED. A requirement for copper in angiogenesis. Nutr Rev. 2004, 62 (2): 60-64.

    PubMed  Google Scholar 

  108. Jiang C, Kim KH, Wang Z, Lu J. Methyl selenium-induced vascular endothelial apoptosis is executed by caspases and principally mediated by p38 MAPK pathway. Nutr Cancer. 2004, 49 (2): 174-183.

    PubMed  CAS  Google Scholar 

  109. Michaud SE, Menard C, Guy LG, Gennaro G, Rivard A. Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. FASEB J. 2003, 17 (9): 1150-1152.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Mariotti, M., Maier, J. (2006). Angiogenesis: An Overview. In: Forough, R. (eds) New Frontiers in Angiogenesis. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4327-9_1

Download citation

Publish with us

Policies and ethics