Skip to main content

RECENT STUDIES ON SOURCES AND SINKS OF METHANE IN THE BLACK SEA

  • Conference paper
Past and Present Water Column Anoxia

Abstract

This study focuses on the influence of gas seepage on methane sources and sinks, aerobic and anaerobic oxidation of methane and the mediating microbial organisms in the Black Sea. We present data from two cruises that took place in 2001 and 2003. Seven stations (two from the shelf, four from the upper and lower slope, and one from the central basin) were compared with respect to methane concentration and isotope signature. The stations differed in methane concentration depending on the location on the slope. A strong change in the concentration and isotopic composition of methane was observed below the oxic/anoxic interface, coinciding with increased levels of archaeal biomarkers (archaeol and sn-2-hydroxy-archaeol). Concentration and isotopic composition of methane in the water column and sediments indicate that sediments from the shelf, slope, and deep basin are only minor sources of methane. The main methane sources are seeps located on the shelf and upper slope, but also in the deep basin. The comparison of two shelf stations with and without methane seepage showed a difference in methane concentrations, isotopic composition and oxidation rates, but the presence of similar methanotrophic microbial assemblages. Also two deep stations at a seep and outside of a seep area were compared, but here methane concentrations and oxidation rates were not different from each other. Anaerobic methane oxidizers (ANME-1 and ANME-2 group) were observed at both stations with slightly higher cell counts at the seep station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amouroux D., Roberts G., Rapsomanikis S. and Andreae M. O. Biogenic gas (CH4,N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar Coast Shelf S 2002; 54:575-87.

    Google Scholar 

  2. Blinova V.N., Ivanov M.K. and Bohrmann G. Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, north-eastern Black Sea. Geo-Mar Lett 2003; 23:250-57.

    Article  Google Scholar 

  3. Blumenberg M., Seifert R., Reitner J., Pape T. and Michaelis W. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. P Natl Acad Sci USA 2004; 101:11111-6.

    Article  Google Scholar 

  4. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jorgensen B. B., Witte U. and Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000; 407:623-26.

    Article  Google Scholar 

  5. Bohrmann G., Ivanov M., Foucher J.P., Spiess V., Bialas J., Greinert J., Weinrebe W., Abegg F., Aloisi G., Artemov Y., Blinova V., Drews M., Heidersdorf F., Krabbenhoft A., Klaucke I., Krastel S., Leder T., Polikarpov I., Saburova M., Schmale O., Seifert R., Volkonskaya A. and Zillmer M. Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Mar Lett 2003; 23:239-49.

    Article  Google Scholar 

  6. Cicerone R.J. and Oremland R.S. Biogeochemical aspects of atmospheric methane. Global Biogeochem Cy 1988; 2:299-327.

    Google Scholar 

  7. Craig H. and Weiss R. F. Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet Sc Lett 1971; 10:289.

    Google Scholar 

  8. Durisch-Kaiser E., Wehrli B. and Schubert C.J. Evidence for intense archaeal and eubacterial methanotrophic activity in the Black Sea water column. Appl Environ Microbiol 2005; submitted.

    Google Scholar 

  9. Eller G., Stubner S. and Frenzel P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol Lett 2001; 198:91-7.

    Article  Google Scholar 

  10. Friedl G., Dinkel C. and Wehrli B. Benthic? uxes of nutrients in the northwestern Black Sea. Mar Chem 1998; 62:77-88.

    Article  Google Scholar 

  11. Friedrich J., Dinkel C., Friedl G., Pimenov N., Wijsman J., Gomoiu M. T., Cociasu A., Popa L. and Wehrli B. Benthic nutrient cycling and diagenetic pathways in the northwestern Black Sea. Estuar Coast Shelf S 2002; 54:369-83.

    Google Scholar 

  12. Gal'chenko V.F., Abranochkina F.N., Bezrukova L.V., Sokolova E.N. and Ivanov M.V. Species composition of aerobic methanotrophic microflora in the Black Sea. Mikrobiologiya 1988; 57:305-11.

    Google Scholar 

  13. Gorur N., Cagatay M.N., Emre O., Alpar B., Sakinc M., Islamoglu Y., Algan O., Erkal T., Kecer M., Akkok R. and Karlik G. Is the abrupt drowning of the Black Sea shelf at 7150 yr BP a myth? Mar Geol 2001; 176:65-73.

    Google Scholar 

  14. Hinrichs K.-U., Hayes J.M., Sylva S.P., Brewer P.G. and DeLong E.F. Methane-consuming archaebacteria in marine sediments. Nature 1999; 398:802-05.

    Google Scholar 

  15. IPPC. Climate Change 2001: The Scientific Basis. Contribution of the Intergovernmental Panel on Climate Change, Greenhouse Gases (pp. 241-287).

    Google Scholar 

  16. Ivanov M.K., Limonov A.F. and Woodside J.M. “Extensive deep fluid flux through the sea floor on the Crimean continental margin (Black Sea).” In Gas Hydrates: Relevance to World Margin Stability and Climate Change, Henriet J.-P. and Mienert J. eds., Geological Society London, 1998.

    Google Scholar 

  17. Ivanov M.V., Pimenov N.V., Rusanov, II and Lein A.Y. Microbial processes of the methane cycle at the north-western shelf of the Black Sea. Estuar Coast Shelf S 2002; 54:589-99.

    Google Scholar 

  18. Ivanov M.V., Polikarpov G.G., Lein A.Y., Galchenko V.F., Egorov V.N., Gulin M.B., Rusanov I.I., Miller Y.M. and Kupzov V.I. Biogeochemistry of carbon cycle on the Black Sea region of CH4 gas seeps. Dokladi Academy Nauk USSR, 1989; 320:1235-40.

    Google Scholar 

  19. Ivanov M.V., Rusanov I.I., Lein A.Y., Pimenov N.V., Yusupov S.K. and Galchenko V.F. Biogeochemistry of methane cycle in the anaerobic zone of the Black Sea, Past and present water column anoxia. NATO Advanced Research Workshop Crimea, Ukraine: NATO, 2003.

    Google Scholar 

  20. Jones G.A. Constraining the initiation and evolution of anoxia in the Black Sea by AMS radiocarbon dating. Radiocarbon 1991; 33:211-12.

    Google Scholar 

  21. Jørgensen B.B., Weber A. and Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea. Deep-Sea Res Pt I 2001; 48:2097-120.

    Google Scholar 

  22. Kipfer R., Aeschbach-Hertig W., Peeters F. and Stute M. “Noble gases in lakes and ground waters.” In Noble gases in geochemistry and cosmochemistry. Porcelli D., Ballentine C. and Wieler R. eds., Mineralogical Society of America, Geochemical Society, 2002.

    Google Scholar 

  23. Koga Y., Morii H., Akagawa-Matsushita M. and Ohga M. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotech Biochem 1998; 62(2):230-36.

    Article  Google Scholar 

  24. Konovalov S.K., Ivanov L.I. and Samodurov A.S. Fluxes and budget of sulphide and ammonia in the Black Sea anoxic layer. J Marine Syst 2001; 31:203-16.

    Google Scholar 

  25. Kvenvolden K.A. Methane hydrates and global climate. Global Biogeochem Cy 1988; 2:221-29.

    Google Scholar 

  26. Kvenvolden K.A., Ginsburg G. and Soloviev V. Worldwide distribution of subaquatic gas hydrates. Geo-Mar Lett 1993; 13:32-40.

    Article  Google Scholar 

  27. Lammers S. and Suess E. An improved head-space analysis method for methane in seawater. Mar Chem 1994; 47:115-25.

    Article  Google Scholar 

  28. Lein A.Y. Methane flows from cold methane seeps in the Black and Norwegian Seas: Quantitative estimates. Geochem Int 2005; 43:395-409.

    Google Scholar 

  29. Luth C., Luth U., Gebruk A.V. and Thiel H. Methane gas seeps along the oxic/anoxic gradient in the Black Sea: manifestations, biogenic sediment compounds, and preliminary results on benthic ecology. Marine Ecology 1999; 20:221-49.

    Article  Google Scholar 

  30. Michaelis W., Seifert R., Nauhaus K., Treude T., Thiel V., Blumenberg M., Knittel K., Gieseke A., Peterknecht K., Pape T., Boetius A., Amann R., Jorgensen B.B., Widdel F., Peckmann J.R., Pimenov N.V. and Gulin M.B. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 2002; 297:1013-15.

    Article  Google Scholar 

  31. Murray J.W., Top Z. and Özsoy E. Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res 1991; 38:663-89.

    Google Scholar 

  32. Orphan V.J., House C.H., Hinrichs K.U., McKeegan K.D. and DeLong E.F. Direct phylogenetic and isotopic evidence for multiple groups of archaea involved in the anaerobic oxidation of methane. Geochim Cosmochim Ac 2002; 66:A571-A571.

    Google Scholar 

  33. Pernthaler A., Preston C.M., Pernthaler J., DeLong E.F. and Amann R. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microb 2002; 68:661-7.

    Google Scholar 

  34. Rasmussen R.A. and Khalil M.A.K. Atmospheric methane in the recent and ancient atmospheres -Concentrations, trends, and interhemispheric gradient. J Geophys Res-Atmos 1984; 89:1599-1605.

    Google Scholar 

  35. Reeburgh W.S. “Global methane biogeochemistry.” In The Atmosphere, Keeling R.F. ed., Oxford, Elsevier-Pergamon, 2003.

    Google Scholar 

  36. Reeburgh W.S. “ "Soft spots" in the global methane budget.” In Microbial growth on C1 compounds,Lidstrom M.E. and Tabita F.R. eds., Amsterdam, Kluwer Academic Publishers, 1996.

    Google Scholar 

  37. Reeburgh W.S., Ward B.B., Whalen S.C., Sandbeck K.A., Kilpatrick K.A. and Kerkhof L.J. Black Sea methane geochemistry. Deep-Sea Res 1991; 38, Supplement 2:1189-1210.

    Google Scholar 

  38. Rehder G., Keir R.S., Suess E. and Rhein M. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophys Res Lett 1999; 26:587-90.

    Article  Google Scholar 

  39. Ross D.A. and Degens E.T. “Recent Sediments of the Black Sea.” In The Black Sea-Geology, Chemistry and Biology, Degens E.T. and Ross D.A. eds., Tulsa, OK, American Association of Petroleum Geologists Memoir 20, 1974.

    Google Scholar 

  40. Ryan W.B.F., Pitman W.C. III, Major C.O., Shimkus K., Moskalenko V., Jones J.A., Dimitrov P., Gorur N., Sakinc M. and Yuce H. An abrupt drowning of the Black Sea shelf. Mar Geol 1997; 138.

    Google Scholar 

  41. Sansone F.J., Popp B.N. and Rust T.M. Stable carbon isotopic composition of low-level methane in water and gas. Anal Chem 1997; 69:40-4.

    Article  Google Scholar 

  42. Schmale O., Greinert J. and Rehder G. Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere. Geophys Res Lett 2005; 32.

    Google Scholar 

  43. Schouten S., Wakeham S.G. and Damste J.S.S. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Org Geochem 2001; 32:1277-81.

    Google Scholar 

  44. Scranton M.I. The marine geochemistry of methane. Ph.D. Thesis. W.H.O.I./M.I.T. Joint Program, Woods Hole, 1977.

    Google Scholar 

  45. Sorokin Y.I. The Black Sea, Eoclogy and Oceanography, Leiden, Backhuys Publishers, 2002.

    Google Scholar 

  46. Teodoru C., Friedl G., Friedrich J., Roehl U., Sturm M. and Wehrli B. Spatial distribution and recent changes in the carbon, nitrogen, and phosphorus accumulation in the sediments of the Black Sea. Global Biogeochem Cy, 2005; submitted.

    Google Scholar 

  47. Thiel V., Blumenberg M., Pape T., Seifert R. and Michaelis W. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Org Geochem 2003; 34:81-7.

    Article  Google Scholar 

  48. Vetriani C., Tran H.V. and Kerkhof L.J. Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 2003; 69:6481-8.

    Article  Google Scholar 

  49. Wakeham S.G., Lewis C.M., Hopmans E.C., Schouten S. and Damste J.S.S. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim Cosmochim Ac 2003; 67:1359-74.

    Article  Google Scholar 

  50. Wüest A., Brooks N.H. and Imboden D.M. Bubble plume modeling for lake restoration. Water Resour Res 1992; 28:3235-50.

    Google Scholar 

  51. Yamamoto S., Alcauskas J.B. and Crozier T.E. Solubility of methane in distilled water and seawater. J Chem Eng Data 1976; 21:78-80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Schubert, C.J. et al. (2006). RECENT STUDIES ON SOURCES AND SINKS OF METHANE IN THE BLACK SEA. In: Neretin, L. (eds) Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4297-3_16

Download citation

Publish with us

Policies and ethics